...
首页> 外文期刊>Journal of the American Chemical Society >Efficient Synthetic Access to Cationic Dendrons and Their Application for ZnO Nanoparticles Surface Functionalization: New Building Blocks for Dye-Sensitized Solar Cells
【24h】

Efficient Synthetic Access to Cationic Dendrons and Their Application for ZnO Nanoparticles Surface Functionalization: New Building Blocks for Dye-Sensitized Solar Cells

机译:阳离子树突的有效合成途径及其在ZnO纳米粒子表面功能化中的应用:染料敏化太阳能电池的新组成部分

获取原文
获取原文并翻译 | 示例

摘要

A new concept for the efficient synthesis of cationic dendrons, 4-tert-butyl-1-(3-(3,4-dihydroxy-benzamido)benzyl)pyridinium bromide (17), 1,1'-(5-(3,4-dihydroxybenzamido)-1,3-phenylene)bis(methyl-ene)bis(4-tert-butylpyridinium) bromide (18), N1 ,N7-bis(3-(4-tert-butyl-pyridium-methyl)phenyl)-4-(3-(3-(4-fert-butyl-pyridinium-methyl)phenyl-amino)-3-oxopropyl)-4-(3,4-dihydroxybenzamido)heptanediamide tribromide (19), and N1,N7-bis(3,5-bis(4-fert-butyl-pyridium-methyl)phenyl)-4-(3-(3,5-bis(4-tert-butyl-pyridinium-meth-yl)phenylamino)-3-oxopropyl)-4-(3,4-dihydroxybenzamido)heptanediamide hexabromide (20), and their facile binding to zinc oxide (ZnO) nanostructures is introduced. Dendrons containing highly reactive benzylic bromides reacted readily with 4-tert-butyl-pyridine and resulted in cationic dendrons. Furthermore, these permanently positively charged dendrons were equipped with a catechol anchor group. This enabled ZnO surface functionalization by simple immersion. The adsorption of 17, 18, 19, and 20 on the colloidal nanoparticles was monitored by Langmuir isotherms. The highest obtained experimental loadings correspond to 99.5%, 98.6%, 99.1%, and 42.5% of the particle surface for 17, 18, 19, and 20, respectively. These results indicate insufficient adsorption of the largest molecule 20 leading to reduced colloidal stability of the nanoparticles, while an enhanced stability after grafting with 17,18, and 19 was observed. Mesoporous films suitable for the use as electrodes in dye-sensitized solar cells (DSSCs) were prepared. Subsequently, the films were functionalized with 18, 19, or 20 and sensitized with zinc-5,15-bis-[2',6'-bis-{2",2"-bis-(carboxy)-ethyl}-methyl-4'-tert-butyl-pheny]-10,20-bis-(4'-tert-butylphenyl)porphyrin-octasodium-salt. UV-vis absorption spectra confirmed that 18,19, and 20 are suitable for the stable electrostatic attachment of the dye. Current-voltage characteristics of complete cells demonstrated that increasing positive functionalization of the ZnO surface leads to decreased open circuit voltages (V_(OC)). All V_(OC) values were around 0.4 V with a maximum for the 18 functionalized ZnO film of 0.45 V. The maximum cell efficiency obtained (0.31%) is rather high, considering the narrow spectral absorption of the dye and the rather thin ZnO films used. Finally, incident photon to current efficiency (IPCE) measurements confirmed photoinduced electron injection from the dye. These features are important assets for applications in particle technology and even facilitated advanced devices like a supramolecular DSSC complete with a subsequent layer of negatively charged porphyrins.
机译:有效合成阳离子树突的新概念-4-叔丁基-1-(3-(3,4-二羟基-苯甲酰胺基)苄基)溴化吡啶鎓(17),1,1'-(5-(3, 4-二羟基苯甲酰胺基)-1,3-亚苯基)双(亚甲基)双(4-叔丁基吡啶鎓)溴化物(18),N1,N7-双(3-(4-叔丁基吡啶鎓甲基)苯基)-4-(3-(3-(4-(叔丁基吡啶鎓甲基)苯基-氨基)-3-氧代丙基)-4-(3,4-二羟基苯甲酰胺基)庚二酰胺三溴化物(N),N7 -双(3,5-双(4-叔丁基-吡啶基甲基)苯基)-4-(3-(3,5-双(4-叔丁基-吡啶基甲基)苯基氨基)-3 -氧代丙基)-4-(3,4-二羟基苯甲酰胺基)庚二酰胺六溴化物(20),以及它们与氧化锌(ZnO)纳米结构的易结合性。含有高反应性苄基溴的树枝状分子容易与4-叔丁基-吡啶反应并生成阳离子树枝状分子。此外,这些永久带正电的树突配备了邻苯二酚锚基。通过简单的浸没,可以实现ZnO表面功能化。用Langmuir等温线监测17、18、19和20在胶体纳米颗粒上的吸附。获得的最高实验负载分别对应于17、18、19和20的粒子表面的99.5%,98.6%,99.1%和42.5%。这些结果表明最大分子20的不充分吸附导致纳米颗粒的胶体稳定性降低,而在用17,18和19接枝后观察到增强的稳定性。制备了适合用作染料敏化太阳能电池(DSSC)中的电极的中孔膜。随后,将膜用18、19或20官能化,并用锌5,15-双-[2',6'-双-{2“,2”-双-(羧基)-乙基}-甲基敏化-4'-叔丁基-苯基] -10,20-双-(4'-叔丁基苯基)卟啉-八钠盐。紫外可见吸收光谱证实18,19和20适用于染料的稳定静电附着。完整电池的电流电压特性表明,增加ZnO表面的正功能化会导致开路电压(V_(OC))降低。所有V_(OC)值均约为0.4 V,其中18个功能化ZnO膜的最大值为0.45V。考虑到染料的窄光谱吸收和相当薄的ZnO膜,获得的最大电池效率(0.31%)很高。用过的。最后,入射光子对电流效率的测量(IPCE)证实了从染料进行光诱导的电子注入。这些功能对于粒子技术的应用来说是重要的资产,甚至有助于先进的设备,例如超分子DSSC,并带有随后的带负电荷的卟啉层。

著录项

  • 来源
    《Journal of the American Chemical Society 》 |2010年第50期| p.17910-17920| 共11页
  • 作者单位

    Department of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen;

    rnGermany, Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen, Germany;

    rnDepartment of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany;

    rnDepartment of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen;

    rnDepartment of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen;

    rnDepartment of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany;

    rnGermany, Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen, Germany;

    rnDepartment of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号