首页> 外文期刊>Journal of the American Chemical Society >In-Situ Probe of Gate Dielectric-Semiconductor Interfacial Order in Organic Transistors: Origin and Control of Large Performance Sensitivities
【24h】

In-Situ Probe of Gate Dielectric-Semiconductor Interfacial Order in Organic Transistors: Origin and Control of Large Performance Sensitivities

机译:有机晶体管中栅介电-半导体界面顺序的原位探针:大性能灵敏度的起源和控制

获取原文
获取原文并翻译 | 示例
       

摘要

Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic "buried interface" problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)- derived self-assembled monolayers (SAMs) on Si/SiO_2 gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X- ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.
机译:有机薄膜晶体管(OTFT)的性能高度依赖于材料的界面,通过适当地修改半导体/栅极介电质的界面可以显着提高性能。但是,这些效果的起源还没有被很好地理解,因为这是传统上难以解决的经典“掩埋接口”问题。在这里,我们解决了以下问题:Si / SiO_2栅极电介质上的正十八烷基硅烷(OTS)衍生的自组装单分子层(SAM)如何影响原型小分子p型半导体P-BTDT(苯基苯并[d, d] thieno [3,2-b; 4,5-b] dithiophene)和并五苯,使用组合式原位和频率生成光谱仪,原子力显微镜以及掠入射和反射X射线散射。根据SAM生长模式来探究OTFT组件在介电/半导体界面处的分子顺序和取向,以了解其如何影响上覆的半导体生长模式,堆积,结晶度和载流子迁移率,进而影响晶体管性能。 。通过使用一种新的,特定于湿度的生长程序的这种理解,导致了用于高度有序的OTS SAM的可再现,可扩展的过程,从而使高度有序的p型半导体膜生长成核,并优化了OTFT性能。出乎意料的是,综合数据表明,尽管SAM分子顺序极大地影响了半导体晶体域的大小和载流子迁移率,但它并没有显着影响上覆有机半导体分子的局部取向。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第28期|p.11726-11733|共8页
  • 作者单位

    Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, United States;

    Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, United States;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, United States;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States,Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, 60208, United States;

    Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, United States;

    Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, United States;

    Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号