首页> 外文期刊>Journal of the American Chemical Society >Near Unity Quantum Yield of Light-Driven Redox Mediator Reduction and Efficient H_2 Generation Using Colloidal Nanorod Heterostructures
【24h】

Near Unity Quantum Yield of Light-Driven Redox Mediator Reduction and Efficient H_2 Generation Using Colloidal Nanorod Heterostructures

机译:光驱动的氧化还原介体还原和使用胶体纳米棒异质结构高效生成H_2的近统一量子产率。

获取原文
获取原文并翻译 | 示例
       

摘要

The advancement of direct solar-to-fuel conversion technologies requires the development of efficient catalysts as well as efficient materials and novel approaches for light harvesting and charge separation. We report a novel system for unprecedentedly efficient (with near-unity quantum yield) light-driven reduction of methylviologen (MV~(2+)), a common redox mediator, using colloidal quasi-type II CdSe/ CdS dot-in-rod nanorods as a light absorber and charge separator and mercaptopropionic acid as a sacrificial electron donor. In the presence of Pt nanopartides, this system can efficiently convert sunlight into H_2, providing a versatile redox mediator-based approach for solar-to-fuel conversion. Compared to related CdSe seed and CdSe/CdS core/shell quantum dots and CdS nanorods, the quantum yields are significantly higher in the CdSe/CdS dot-in-rod structures. Comparison of charge separation, recombination and hole filling rates in these complexes showed that the dot-in-rod structure enables ultrafast electron transfer to methylviologen, fast hole removal by sacrificial electron donor and slow charge recombination, leading to the high quantum yield for MV~(2+) photoreduction. Our finding demonstrates that by controlling the composition, size and shape of quantum-confined nanoheterostructures, the electron and hole wave functions can be tailored to produce efficient light harvesting and charge separation materials.
机译:直接的太阳能转化为燃料的技术的进步要求开发高效的催化剂,高效的材料以及用于光收集和电荷分离的新颖方法。我们报告了一种新型系统,该系统使用胶体准II型CdSe / CdS点状棒,以空前有效的方式(具有近统一的量子产率)光驱动还原甲基紫精(MV〜(2+)),这是一种常见的氧化还原介体。纳米棒作为光吸收剂和电荷分离剂,巯基丙酸作为牺牲电子供体。在Pt纳米粒子的存在下,该系统可以有效地将阳光转化为H_2,从而为太阳能到燃料的转化提供了一种基于通用氧化还原介体的方法。与相关的CdSe种子,CdSe / CdS核/壳量子点和CdS纳米棒相比,CdSe / CdS杆中点结构的量子产率显着更高。比较这些配合物中的电荷分离,重组和空穴填充率,结果表明点状结构可实现超快电子转移至甲基紫精,通过牺牲电子给体快速去除空穴以及缓慢的电荷重组,从而导致MV〜的量子产率高。 (2+)光还原。我们的发现表明,通过控制量子限制的纳米异质结构的组成,大小和形状,可以定制电子和空穴波函数以产生有效的光收集和电荷分离材料。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第28期|p.11701-11708|共8页
  • 作者单位

    Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States;

    Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States;

    Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States;

    Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States;

    Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号