首页> 外文期刊>Journal of the American Chemical Society >Molecular Mechanism of ATP Hydrolysis in F_1ATPase Revealed by Molecular Simulations and Single-Molecule Observations
【24h】

Molecular Mechanism of ATP Hydrolysis in F_1ATPase Revealed by Molecular Simulations and Single-Molecule Observations

机译:分子模拟和单分子观察揭示了F_1ATPase中ATP水解的分子机理

获取原文
获取原文并翻译 | 示例
           

摘要

Enzymatic hydrolysis of nucleotide triphosphate (NTP) plays a pivotal role in protein functions. In spite of its biological significance, however, the chemistry of the hydrolysis catalysis remains obscure because of the complex nature of the reaction. Here we report a study of the molecular mechanism of hydrolysis of adenosine triphosphate (ATP) in F_1ATPase, an ATP-driven rotary motor protein. Molecular simulations predicted and single-molecule observation experiments verified that the rate-determining step (RDS) is proton transfer (PT) from the lytic water molecule, which is strongly activated by a metaphosphate generated by a preceding P_γ-O_β bond dissociation (POD). Catalysis of the POD that triggers the chain activation of the PT is fulfilled by hydrogen bonds between Walker motif A and an arginine finger, which commonly exist in many NTPases. The reaction mechanism unveiled here indicates that the protein can regulate the enzymatic activity for the function in both the POD and PT steps despite the fact that the RDS is the PT step.
机译:三磷酸核苷酸(NTP)的酶水解在蛋白质功能中起关键作用。然而,尽管其具有生物学意义,但由于该反应的复杂性质,其水解催化的化学作用仍然不清楚。在这里,我们报告了对ATP驱动的旋转运动蛋白F_1ATPase中三磷酸腺苷(ATP)水解的分子机制的研究。分子模拟预测和单分子观察实验验证了速率决定步骤(RDS)是来自裂解水分子的质子转移(PT),其被先前P_γ-O_β键解离(POD)生成的偏磷酸盐强烈激活。沃克基序A和精氨酸指之间的氢键可完成触发PT链激活的POD的催化作用,而氢键通常存在于许多NTPase中。此处揭示的反应机理表明,尽管RDS是PT步骤,但该蛋白质仍可以调节POD和PT步骤功能的酶活性。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第20期|p.8447-8454|共8页
  • 作者单位

    Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;

    Department of Physics, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan;

    Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;

    Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;

    Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;

    Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan;

    Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan;

    Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan;

    Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan;

    Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号