首页> 外文期刊>Journal of the American Chemical Society >Enhanced Solid-State Order and Field-Effect Hole Mobility through Control of Nanoscale Polymer Aggregation
【24h】

Enhanced Solid-State Order and Field-Effect Hole Mobility through Control of Nanoscale Polymer Aggregation

机译:通过控制纳米级聚合物聚集增强的固态有序和场效应空穴迁移率

获取原文
获取原文并翻译 | 示例
           

摘要

Efficient charge carrier transport in organic field-effect transistors (OFETs) often requires thin films that display long-range order and close π-π packing that is oriented in-plane with the substrate. Although some polymers have achieved high field-effect mobility with such solid-state properties, there are currently few general strategies for controlling the orientation of π-stacking within polymer films. In order to probe structural effects on polymer-packing alignment, furan-containing diketopyrrolopyrrole (DPP) poly- mers with similar optoelectronic properties were synthesized with either linear hexadecyl or branched 2-butyloctyl side chains. Differences in polymer solubility were observed and attributed to variation in side-chain shape and polymer backbone curvature. Averaged field-effect hole mobilities of the polymers range from 0.19 to 1.82 cm~2/V·s, where PDPP3F-C16 is the least soluble polymer and provides the highest maximum mobility of 2.25 cm~2 /V·s. Analysis of the films by AFM and GIXD reveal that less soluble polymers with linear side chains exhibit larger crystalline domains, pack considerably more closely, and align with a greater preference for in-plane π-π packing. Characterization of the polymer solutions prior to spin-coating shows a correlation between early onset nanoscale aggregation and the formation of films with highly oriented in-plane π-stacking. This effect is further observed when nonsolvent is added to PDPP3F-BO solutions to induce aggregation, which results in films with increased nanostructural order, in-plane π-π orientation, and field-effect hole mobilities. Since nearly all π-conjugated materials may be coaxed to aggregate, this strategy for enhancing solid-state properties and OFET performance has applicability to a wide variety of organic electronic materials.
机译:有机场效应晶体管(OFET)中有效的电荷载流子传输通常需要显示远距离有序的薄膜和紧密的π-π堆积,该堆积与基板成平面。尽管一些聚合物已经获得了具有这种固态特性的高场效应迁移率,但是目前很少有用于控制聚合物膜中π堆叠方向的通用策略。为了探究结构对聚合物堆积排列的影响,合成了具有类似光电特性的含呋喃的二酮吡咯并吡咯(DPP)聚合物,它们带有直链十六烷基或支链2-丁基辛基侧链。观察到聚合物溶解度的差异,这归因于侧链形状和聚合物主链曲率的变化。聚合物的平均场效应空穴迁移率在0.19至1.82 cm〜2 / V·s范围内,其中PDPP3F-C16是溶解度最低的聚合物,并具有最高的2.25 cm〜2 / V·s的最大迁移率。通过AFM和GIXD对薄膜进行的分析表明,具有线性侧链的溶解度较低的聚合物表现出较大的晶畴,堆积更为紧密,并且更倾向于平面内π-π堆积。旋涂之前的聚合物溶液的表征表明,早期的纳米级聚集与具有高度取向的面内π堆积的薄膜的形成之间存在相关性。当将非溶剂添加到PDPP3F-BO溶液中以诱导聚集时,会进一步观察到这种效果,从而导致薄膜的纳米结构顺序增加,面内π-π方向增加,并且场效应空穴迁移率增加。由于几乎所有的π共轭材料都可以被聚集,因此这种提高固态性能和OFET性能的策略可适用于多种有机电子材料。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第51期|19229-19236|共8页
  • 作者单位

    Departments of Chemistry, University of California, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Departments of Chemistry, University of California, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Departments of Chemistry, University of California, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States;

    Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States;

    King Abdullah University of Science and Technology, Thuwal, Saudi Arabia 23955-6900;

    Departments of Chemistry,Physics, University of California, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California, Berkeley, California 94720, United States;

    Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States;

    Physics, University of California, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California, Berkeley, California 94720, United States;

    Departments of Chemistry,chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,King Abdullah University of Science and Technology, Thuwal, Saudi Arabia 23955-6900;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号