首页> 外文期刊>Journal of the American Chemical Society >Defects Are Needed for Fast Photo-Induced Electron Transfer from a Nanocrystal to a Molecule: Time-Domain Ab Initio Analysis
【24h】

Defects Are Needed for Fast Photo-Induced Electron Transfer from a Nanocrystal to a Molecule: Time-Domain Ab Initio Analysis

机译:从纳米晶体到分子的快速光致电子转移需要有缺陷:时域从头算分析

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum dot (QD) solar cells constitute an attractive alternative to traditional solar cells due to unique electronic and optical properties of QDs. In order to achieve high photon-to-electron conversion efficiency, rapid charge separation and slow charge recombination are required. We use nonadiabatic molecular dynamics combined with time-domain density functional theory to study electron transfer from a PbS QD to the rhodamine B (RhB) molecule and subsequent electron return from RhB to the QD. The time scale for the electron-hole recombination obtained for the system without defects agrees well with the experiment, while the simulated time scale for the charge separation is 10-fold longer than the experimental value. By performing an atomistic simulation with a sulfur vacancy, which is a common defect in PbS systems, we demonstrate that the defect accelerates the charge separation. This result is supported further by scaling arguments. Missing sulfur creates unsaturated chemical bonds on Pb atoms, which form the PbS conduction band. As a result, the QD lowest unoccupied molecular orbital (LUMO) is lowered in energy, and the LUMO density extends onto the adsorbed molecule, increasing the donor-acceptor interaction. The counterintuitive conclusion that defects are essential rather than detrimental to functioning of QD solar cells generates an unexpected view on the QD surface chemistry.
机译:量子点(QD)太阳能电池由于其独特的电子和光学特性而成为传统太阳能电池的有吸引力的替代品。为了实现高的光子-电子转换效率,需要快速的电荷分离和缓慢的电荷复合。我们使用非绝热分子动力学与时域密度泛函理论相结合,研究了电子从PbS量子点到罗丹明B(RhB)分子的转移以及随后电子从RhB到量子点的返回。对于没有缺陷的系统,获得的电子-空穴复合的时间尺度与实验吻合得很好,而电荷分离的模拟时间尺度比实验值长10倍。通过执行硫空位(这是PbS系统中的常见缺陷)的原子模拟,我们证明了缺陷加速了电荷分离。通过缩放参数进一步支持此结果。硫的缺失会在Pb原子上产生不饱和化学键,从而形成PbS导带。结果,QD最低的未占据分子轨道(LUMO)的能量降低,LUMO密度扩展到吸附的分子上,从而增加了供体-受体的相互作用。缺陷对QD太阳能电池的功能至关重要而不是有害的反直觉结论在QD表面化学上产生了出乎意料的观点。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第50期|18892-18900|共9页
  • 作者单位

    School of Physics, Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland The SEC Research Cluster, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland Department of Chemistry, University of Rochester, Rochester, New York 14627, United States;

    The SEC Research Cluster, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland;

    Department of Chemistry, University of Rochester, Rochester, New York 14627, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:12:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号