首页> 外文期刊>Journal of the American Chemical Society >In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction
【24h】

In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction

机译:电化学水氧化还原氧高活性双功能氧化锰催化剂的原位X射线吸收光谱研究

获取原文
获取原文并翻译 | 示例
           

摘要

In situ X-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in situ XAS measurements on a bifunctional manganese oxide (MnO_x) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs RHE produces a disordered Mn_3~(Ⅱ,Ⅲ,Ⅲ)O_4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed Mn~(Ⅲ,Ⅳ) oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn_3~(Ⅱ,Ⅲ,Ⅲ)O_4. XAS and electrochemical characterization of two thin film catalysts with different MnO_x thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the Mn~(Ⅲ,Ⅳ) oxide, rather than Mn_3~(Ⅱ,Ⅲ,Ⅲ)O_4, is the phase pertinent to the observed OER activity.
机译:原位X射线吸收光谱(XAS)是一种可应用于电化学系统的强大技术,能够阐明反应条件下电催化剂的化学性质。在这项研究中,我们对具有高电化学活性的双功能氧化锰(MnO_x)催化剂进行原位XAS测量,该活性用于氧还原反应(ORR)和氧释放反应(OER)。使用近边缘结构的X射线吸收(XANES)和扩展X射线吸收的精细结构(EXAFS),我们发现与ORR相关的电位相对于RHE接触0.7 V会产生无序的Mn_3〜(Ⅱ,Ⅲ,Ⅲ) O_4阶段,其他阶段的贡献可忽略不计。在将电位提高到相对于RHE的RHE的高阳极值为1.8 V之后,我们观察到约80%的催化薄膜被氧化形成Mn〜(Ⅲ,Ⅳ)混合氧化物,而其余薄膜的20%由较少的氧化相组成,可能对应于Mn_3〜(Ⅱ,Ⅲ,Ⅲ)O_4不变。 XAS和两种具有不同MnO_x厚度的薄膜催化剂的电化学表征表明,在ORR或OER电位下,厚度对测得的氧化态均无显着影响,但表明OER活性随膜厚而定。该结果表明该膜具有多孔结构,其不将电催化作用限制于膜的顶部几何层。由于催化剂膜最可能在OER所需的高电势下被氧化的部分是最接近电解质界面的部分,因此我们假设是Mn〜(Ⅲ,Ⅳ)氧化物,而不是Mn_3〜( Ⅱ,Ⅲ,Ⅲ)O_4是与观察到的OER活性有关的相。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第23期|8525-8534|共10页
  • 作者单位

    Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States;

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,Synchrotron SOLEIL, L'Orme des Merisiers, BP 42 Saint-Aubin 91192, Gif-sur-Yvette, France;

    Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States;

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States;

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号