首页> 外文期刊>Journal of the American Chemical Society >Thermodynamicslly Driven One-Dimensional Evolution of Anatase TiO_2 Nanorods: One-Step Hydrothermal Synthesis for Emerging Intrinsic Superiority of Dimensionality
【24h】

Thermodynamicslly Driven One-Dimensional Evolution of Anatase TiO_2 Nanorods: One-Step Hydrothermal Synthesis for Emerging Intrinsic Superiority of Dimensionality

机译:热力学驱动的锐钛矿型TiO_2纳米棒的一维演化:一步式水热合成以显现固有的尺寸优势

获取原文
获取原文并翻译 | 示例
       

摘要

In photoelectrochemical cells, there exists a competition between transport of electrons through the porous semiconductor electrode toward the conducting substrate and back-reaction of electrons to recombine with oxidized species on the semiconductor-electrolyte interface, which determines the charge collection efficiency and is strongly influenced by the density and distribution of electronic states in band gap and architectures of the semiconductor electrodes. One-dimensional (1D) anatase TiO_2 nanostructures are promising to improve charge transport in photoelectrochemical devices. However, the conventional preparation of 1D anatase nanostructures usually steps via a titanic acid intermediate (e.g., H_2Ti_3O_7), which unavoidably introduces electronic defects into the host lattice, resulting in undesired shielding of the intrinsic role of dimensionality. Here, we manage to promote the 1D growth of anatase TiO_2 nanostructures by adjusting the growth kinetics, which allows us to grow single-crystalline anatase TiO_2 nanorods through a one-step hydrothermal reaction. The synthesized anatase nanorods possess a lower density of trap states and thus can simultaneously facilitate the diffusion-driven charge transport and suppress the electron recombination. Moreover, the electronically boundary free nanostructures significantly enhance the trap-free charge diffusion coefficient of the anatase nanorods, which enables the emergence of the intrinsic superiority of dimensionality. By virtue of these merits, the anatase nanorods synthesized in this work take obvious advantages over the conventional anatase counterparts in photoelectrochemical systems (e.g., dye-sensitized solar cells) by showing more efficient charge transport and collection and higher energy conversion efficiency.
机译:在光电化学电池中,电子通过多孔半导体电极向导电衬底的传输与电子的反反应以与半导体-电解质界面上的氧化种重新结合之间存在竞争,这决定了电荷收集效率并受到电子的强烈影响。带隙中电子态的密度和分布以及半导体电极的结构。一维(1D)锐钛矿型TiO_2纳米结构有望改善光电化学装置中的电荷传输。然而,常规的一维锐钛矿纳米结构的制备通常通过钛酸中间体(例如,H_2Ti_3O_7)进行,这不可避免地将电子缺陷引入主体晶格,导致不希望的对尺寸的固有作用的屏蔽。在这里,我们设法通过调节生长动力学来促进锐钛矿TiO_2纳米结构的一维生长,这使我们能够通过一步水热反应生长单晶锐钛矿TiO_2纳米棒。合成的锐钛矿型纳米棒具有较低的陷阱态密度,因此可以同时促进扩散驱动的电荷传输并抑制电子重组。此外,电子边界自由的纳米结构显着增强了锐钛矿纳米棒的无陷阱电荷扩散系数,这使得尺寸固有的优越性得以显现。凭借这些优点,通过显示更有效的电荷传输和收集以及更高的能量转换效率,在这项工作中合成的锐钛矿纳米棒在光电化学系统(例如染料敏化太阳能电池)中比常规的锐钛矿对应物具有明显的优势。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第43期|15310-15318|共9页
  • 作者单位

    Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;

    Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;

    Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;

    Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;

    Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:15

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号