首页> 外文期刊>Journal of the American Chemical Society >Probing the Electrostatics of Active Site Microenvironments along the Catalytic Cycle for Escherichia coli Dihydrofolate Reductase
【24h】

Probing the Electrostatics of Active Site Microenvironments along the Catalytic Cycle for Escherichia coli Dihydrofolate Reductase

机译:沿着大肠杆菌二氢叶酸还原酶催化循环探索活性位点微环境的静电

获取原文
获取原文并翻译 | 示例
           

摘要

Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and ~(13)C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor-acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for significant electrostatic changes in the active site microenvironments due to conformational motion occurring over the catalytic cycle of ecDHFR.
机译:静电相互作用通过引导配体结合并促进化学反应在酶催化中发挥重要作用。这些静电相互作用是由催化循环中发生的构象变化调节的。在此,通过在活性位点的两个位点特异性位点掺入硫氰酸盐探针,沿着大肠杆菌二氢叶酸还原酶(ecDHFR)的催化循环检查了所有酶复合物的活性位点静电微环境的变化。用光谱技术和混合量子力学/分子力学(QM / MM)计算研究了探针周围微环境的静电和水合度。沿催化环境的静电微环境的变化导致不同的腈(CN)振动拉伸频率和〜(13)C NMR化学位移。这些环境变化起因于催化过程中的蛋白质构象重排。 QM / MM计算重现了硫氰酸盐探针在催化的氢化物转移步骤中通过实验测得的振动频率偏移,该步骤跨越了酶的封闭和封闭构象。分子动力学轨迹的分析提供了对这两种状态之间发生的构象变化以及经典静电和特定氢键相互作用的结果变化的了解。沿着探针的CN轴的电​​场被分解为构成探针周围微环境的特定残基,配体和溶剂分子。此外,沿着氢化物供体-受体轴的电场的计算以及该场分解成特定贡献的过程表明,辅因子和底物以及酶施加了一个促进氢化物转移的实质性电场。总体而言,实验和理论数据提供了证据,表明由于在ecDHFR催化周期内发生构象运动,导致活性位点微环境发生了明显的静电变化。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第29期|10349-10360|共12页
  • 作者单位

    Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3364, United States;

    Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

    Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States;

    Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

    Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3364, United States;

    Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号