首页> 外文期刊>Journal of the American Chemical Society >Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER)
【24h】

Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER)

机译:高效,低Ir的Ir-Ni氧化物电化学水分解(OER)的结构和活性的分子洞察

获取原文
获取原文并翻译 | 示例
       

摘要

Mixed bimetallic oxides offer great opportunities for a systematic tuning of electrocatalytic activity and stability. Here, we demonstrate the power of this strategy using well-defined thermally prepared Ir-Ni mixed oxide thin film catalysts for the electrochemical oxygen evolution reaction (OER) under highly corrosive conditions such as in acidic proton exchange membrane (PEM) electrolyzers and photoelectrochemical cells (PEC). Variation of the Ir to Ni ratio resulted in a volcano type OER activity curve with an unprecedented 20-fold improvement in Ir mass-based activity over pure Ir oxide. In situ spectroscopic probing of metal dissolution indicated that, against common views, activity and stability are not directly anticorrelated. To uncover activity and stability controlling parameters, the Ir-Ni mixed thin oxide film catalysts were characterized by a wide array of spectroscopic, microscopic, scattering, and electrochemical techniques in conjunction with DFT theoretical computations. By means of an intuitive model for the formation of the catalytically active state of the bimetallic Ir-Ni oxide surface, we identify the coverage of reactive surface hydroxyl groups as a suitable descriptor for the OER activity and relate it to controllable synthetic parameters. Overall, our study highlights a novel, highly active oxygen evolution catalyst; moreover, it provides novel important insights into the structure and performance of bimetallic oxide OER electrocatalysts in corrosive acidic environments.
机译:混合双金属氧化物为系统调节电催化活性和稳定性提供了巨大机会。在这里,我们展示了使用定义明确的热制备Ir-Ni混合氧化物薄膜催化剂进行高纯度腐蚀的条件下,例如在酸性质子交换膜(PEM)电解槽和光电化学电池中的电化学放氧反应(OER),该策略的强大功能(PEC)。 Ir / Ni比率的变化导致了火山型OER活性曲线,其Ir质量基活性比纯Ir氧化物空前提高了20倍。金属溶解的原位光谱探测表明,与普通观点相反,活性和稳定性不是直接相关的。为了揭示活性和稳定性控制参数,Ir-Ni混合薄膜催化剂的特征在于,结合DFT理论计算,采用了多种光谱,显微,散射和电化学技术。通过直观的模型来形成双金属Ir-Ni氧化物表面的催化活性状态,我们确定了反应性表面羟基的覆盖度是OER活性的合适描述子,并将其与可控制的合成参数相关。总的来说,我们的研究突出了一种新型的高活性氧释放催化剂。此外,它为腐蚀性酸性环境中的双金属氧化物OER电催化剂的结构和性能提供了重要的新见解。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第40期|13031-13040|共10页
  • 作者单位

    Department of Chemistry, Chemical and Materials Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universitaet Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany;

    Department of Chemistry, Chemical and Materials Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universitaet Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany;

    Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Duesseldorf, Germany;

    Institute for Applied Materials and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany;

    Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany;

    Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany;

    Zentraleinrichtung Elektronenmikroskopie, Technische Universitaet Berlin, D-10623 Berlin, Germany;

    Department of Chemistry, Chemical and Materials Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universitaet Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany;

    Department of Chemistry, Chemical and Materials Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universitaet Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany;

    Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany;

    Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Duesseldorf, Germany;

    Department of Chemistry, Chemical and Materials Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universitaet Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号