首页> 外文期刊>Journal of the American Chemical Society >Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C-H Activation Promoted by Metal-Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry
【24h】

Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C-H Activation Promoted by Metal-Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry

机译:金属-有机协同催化(MOCC)促进的C-H活化与未活化烯烃与酮α-烷基化的机理:丰富了MOCC化学

获取原文
获取原文并翻译 | 示例
       

摘要

Metal-organic cooperative catalysis (MOCC) has been successfully applied for hydroacylation of olefins with aldehydes via directed C(sp~2)-H functionalization. Most recently, it was reported that an elaborated MOCC system, containing Rh(Ⅰ) catalyst and 7-azaindoline (L1) cocatalyst, could even catalyze ketone α-alkylation with unactivated olefins via C(sp~3)-H activation. Herein we present a density functional theory study to understand the mechanism of the challenging ketone α-alkylation. The transformation uses IMesRh(Ⅰ)C1(L1)(CH_2=CH_2) as an active catalyst and proceeds via sequential seven steps, including ketone condensation with L1, giving enamine 1b; 1b coordination to Rh(Ⅰ) active catalyst, generating Rh(Ⅰ)-1b intermediate; C(sp~2)-H oxidative addition, leading to a Rh(Ⅲ)-H hydride; olefin migratory insertion into Rh(Ⅲ)-H bond; reductive elimination, generating Rh(Ⅰ)-1c(alkylated 1b) intermediate; decoordination of 1c, liberating 1c and regenerating Rh(Ⅰ) active catalyst; and hydrolysis of 1c, furnishing the final a-alkylation product 1d and regenerating L1. Among the seven steps, reductive elimination is the rate-determining step. The C-H bond preactivation via agostic interaction is crucial for the bond activation. The mechanism rationalizes the experimental puzzles: why only L1 among several candidates performed perfectly, whereas others failed, and why Wilkinson's catalyst commonly used in MOCC systems performed poorly. Based on the established mechanism and stimulated by other relevant experimental reactions, we attempted to enrich MOCC chemistry computationally, exemplifying how to develop new organic catalysts and proposing L7 to be an alternative for L1 and demonstrating the great potential of expanding the hitherto exclusive use of Rh(Ⅰ)/Rh(Ⅲ) manifold to Co(0)/Co(Ⅱ) redox cycling in developing MOCC systems.
机译:金属有机协同催化(MOCC)已成功地通过定向C(sp〜2)-H官能化用于烯烃与醛的加氢酰化反应。最近,有报道说,含有Rh(Ⅰ)催化剂和7-氮杂吲哚啉(L1)助催化剂的精细MOCC体系甚至可以通过C(sp〜3)-H活化与未活化的烯烃催化酮α-烷基化。在这里,我们目前进行密度泛函理论研究,以了解具有挑战性的酮α-烷基化的机理。该转化以IMesRh(Ⅰ)C1(L1)(CH_2 = CH_2)为活性催化剂,并通过连续的七个步骤进行,包括与L1的酮缩合,得到烯胺1b。 1b与Rh(Ⅰ)活性催化剂配位,生成Rh(Ⅰ)-1b中间体; C(sp〜2)-H氧化加成反应生成Rh(Ⅲ)-H氢化物;烯烃迁移插入Rh(Ⅲ)-H键;还原消除,生成Rh(Ⅰ)-1c(烷基化1b)中间体; 1c解配,释放1c并再生Rh(Ⅰ)活性催化剂; 1c的水解,得到最终的α-烷基化产物1d并再生L1。在这七个步骤中,还原消除是速率确定步骤。通过原子相互作用进行的C-H键预激活对于键激活至关重要。该机制合理化了实验难题:为什么几个候选者中只有L1表现出色,而其他候选者却不及格,以及为什么MOCC系统中常用的威尔金森催化剂表现不佳。基于已建立的机理并在其他相关实验反应的刺激下,我们尝试通过计算丰富MOCC化学,举例说明如何开发新的有机催化剂,并提出将L7用作L1的替代品,并证明了扩大迄今独家使用Rh的巨大潜力在发展中的MOCC系统中,(Ⅰ)/ Rh(Ⅲ)流形对Co(0)/ Co(Ⅱ)的氧化还原循环。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第19期|6279-6291|共13页
  • 作者单位

    School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China;

    School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China;

    School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China;

    School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China;

    School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号