首页> 外文期刊>Journal of the American Chemical Society >Autonomic Molecular Transport by Polymer Films Containing Programmed Chemical Potential Gradients
【24h】

Autonomic Molecular Transport by Polymer Films Containing Programmed Chemical Potential Gradients

机译:通过包含编程化学势梯度的聚合物膜进行自主分子运输。

获取原文
获取原文并翻译 | 示例
       

摘要

Materials which induce molecular motion without external input offer unique opportunities for spatial manipulation of molecules. Here, we present the use of polyacrylamide hydrogel films containing built-in chemical gradients (enthalpic gradients) to direct molecular transport. Using a cationic tertiary amine gradient, anionic molecules were directionally transported up to several millimeters. A 40-fold concentration of anionic molecules dosed in aerosol form on a substrate to a small region at the center of a radially symmetric cationic gradient was observed. The separation of mixtures of charged dye molecules was demonstrated using a boronic acid-to-cationic gradient where one molecule was attracted to the boronic acid end of the gradient, and the other to the cationic end of the gradient. Theoretical and computational analysis provides a quantitative description of such anisotropic molecular transport, and reveals that the gradient-imposed drift velocity is in the range of hundreds of nanometers per second, comparable to the transport velocities of biomolecular motors. This general concept of enthalpy gradient-directed molecular transport should enable the autonomous processing of a diversity of chemical species.
机译:无需外部输入即可诱导分子运动的材料为分子的空间操纵提供了独特的机会。在这里,我们介绍了使用包含内置化学梯度(焓梯度)的聚丙烯酰胺水凝胶薄膜来指导分子运输。使用阳离子叔胺梯度,将阴离子分子定向转运至几毫米。观察到以气溶胶形式在底物上以径向对称阳离子梯度的中心的小区域计量的阴离子分子的浓度是40倍。带电荷的染料分子混合物的分离使用硼酸-阳离子梯度进行了证明,其中一个分子被吸引到梯度的硼酸端,另一个分子被吸引到梯度的阳离子端。理论和计算分析提供了这种各向异性分子传输的定量描述,并揭示了与生物分子马达的传输速度相当的梯度施加的漂移速度在每秒数百纳米的范围内。焓梯度定向分子运输的一般概念应能实现多种化学物种的自主加工。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第15期|5066-5073|共8页
  • 作者单位

    Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States, 3 M Company, 3 M Center, St. Paul, MN 55144, United States;

    Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, New York 10027, United States;

    Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743, Korea;

    Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, United States;

    Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, New York 10027, United States;

    Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060, United States;

    Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号