首页> 外文期刊>Journal of the American Chemical Society >A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench ~(57)Fe Moessbauer Data, and a Hydride Resting State
【24h】

A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench ~(57)Fe Moessbauer Data, and a Hydride Resting State

机译:合成的单站点铁氮酶:高周转率,〜(57)Fe Moessbauer冻结-淬火数据和氢化物静止状态

获取原文
获取原文并翻译 | 示例
       

摘要

The mechanisms of the few known molecular nitrogen-fixing systems, including nitrogenase enzymes, are of much interest but are not fully understood. We recently reported that Fe-N_2 complexes of terradentate P_3~E ligands (E = B, C) generate catalytic yields of NH_3 under an atmosphere of N_2 with acid and reductant at low temperatures. Here we show that these Fe catalysts are unexpectedly robust and retain activity after multiple reloadings. Nearly an order of magnitude improvement in yield of NH_3 for each Fe catalyst has been realized (up to 64 equiv of NH_3 produced per Fe for P_3~B and up to 47 equiv for P_3~C) by increasing acid/reductant loading with highly purified acid. Cyclic voltammetry shows the apparent onset of catalysis at the P_3~BFe-N_2/P_3~BFe-N_2~- couple and controlled-potential electrolysis of P_3~BFe~+ at -45 ℃ demonstrates that electrolytic N_2 reduction to NH_3 is feasible. Kinetic studies reveal first-order rate dependence on Fe catalyst concentration (P_3~B), consistent with a single-site catalyst model. An isostructural system (P_3~(Si)) is shown to be appreciably more selective for hydrogen evolution. In situ fireeze-quench Moessbauer spectroscopy during turnover reveals an iron-borohydrido-hydride complex as a likely resting state of the P_3~BFe catalyst system. We postulate that hydrogen-evolving reaction activity may prevent iron hydride formation from poisoning the P_3~BFe system. This idea may be important to consider in the design of synthetic nitrogenases and may also have broader significance given that intermediate metal hydrides and hydrogen evolution may play a key role in biological nitrogen fixation.
机译:很少有人知道包括固氮酶在内的分子固氮系统的机理,但尚未完全了解。最近,我们报道了梯状P_3〜E配体的Fe-N_2配合物(E = B,C)在N_2气氛下用酸和还原剂在低温下生成NH_3的催化产率。在这里,我们表明这些铁催化剂出乎意料地坚固,并在多次重装后仍保持活性。通过提高酸/还原剂的负载量和高纯度,已经实现了每种铁催化剂的NH_3收率提高了近一个数量级(对于P_3〜B,每Fe最多可生产64当量的NH_3,对于P_3〜C可达到47当量的NH)。酸。循环伏安法表明在P_3〜BFe-N_2 / P_3〜BFe-N_2〜-偶合处有明显的催化开始作用,P_3〜BFe〜+在-45℃下的控制电位电解表明将N_2电解还原为NH_3是可行的。动力学研究表明一级速率对铁催化剂浓度(P_3〜B)的依赖性,与单中心催化剂模型一致。研究表明,同构系统(P_3〜(Si))对析氢的选择性更高。周转过程中的原位淬火猝灭Moessbauer光谱显示P_3〜BFe催化剂体系的可能静止态为铁-硼氢化物-氢化物配合物。我们推测,析氢反应活性可以防止氢化铁的形成中毒P_3〜BFe系统。考虑到中间金属氢化物和氢的释放可能在生物固氮中起关键作用,这一想法可能在设计合成固氮酶时需要考虑,并且可能具有更广泛的意义。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第16期|5341-5350|共10页
  • 作者单位

    Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States;

    Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States;

    Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:08:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号