首页> 外文期刊>Journal of the American Chemical Society >On the Origin of Ionic Rectification in DNA-Stuffed Nanopores: The Breaking and Retrieving Symmetry
【24h】

On the Origin of Ionic Rectification in DNA-Stuffed Nanopores: The Breaking and Retrieving Symmetry

机译:DNA填充纳米孔中离子整流的起源:打破和检索对称。

获取原文
获取原文并翻译 | 示例
       

摘要

The discovery of ionic current rectification (ICR) phenomena in synthetic nanofluidic systems elicits broad interest from interdisciplinary fields of chemistry, physics, materials science, and nanotechnology; and thus, boosts their applications in, for example, chemical sensing, fluidic pumping, and energy related aspects. So far, it is generally accepted that the ICR effect stems from the broken symmetry either in the nanofluidic structures, or in the environmental conditions. Although this empirical regularity is supported by numerous experimental and theoretical results, great challenge still remains to precisely figure out the correlation between the asymmetric ion transport properties and the degree of symmetry breaking. An appropriate and quantified measure is therefore highly demanded. Herein, taking DNA-stuffed nanopores as a model system, we systematically investigate the evolution of dynamic ICR in between two symmetric states. The fully stuffed and fully opened nanopores are symmetric; therefore, they exhibit linear ion transport behaviors. Once the stuffed DNA superstructures are asymmetrically removed from one end of the nanopore via aptamer-target interaction, the nanofluidic system becomes asymmetric and starts to rectify ionic current. The peak of ICR is found right before the breakthrough of the stuffed DNA forest. After that, the nanofluidic system gradually retrieves symmetry, and becomes non-rectified. Theoretical results by both the coarse-grained Poisson-Nernst–Planck model and the 1D statistic model excellently support the experimental observations, and further establish a quantified correlation between the ICR effect and the degree of asymmetry for different molecular filling configurations. Based on the ICR properties, we develop a proof-of-concept demonstration for sensing ATP, termed the ATP balance. These findings help to clarify the origin of ICR, and show implications to other asymmetric transport phenomena for future innovative nanofluidic devices and materials.
机译:合成纳米流体系统中离子电流整流(ICR)现象的发现引起了化学,物理学,材料科学和纳米技术等跨学科领域的广泛兴趣。因此,增强了它们在例如化学传感,流体泵送以及能源相关方面的应用。迄今为止,人们普遍认为,ICR效应源于纳米流体结构或环境条件下对称性的破坏。尽管许多实验和理论结果都支持这种经验规律性,但要精确地计算出不对称离子传输特性与对称破坏程度之间的相关性,仍然存在巨大的挑战。因此,迫切需要一种适当的量化措施。在这里,以DNA填充的纳米孔为模型系统,我们系统地研究了两个对称状态之间动态ICR的演变。完全填充和完全打开的纳米孔是对称的。因此,它们表现出线性的离子迁移行为。一旦通过适体-靶相互作用从纳米孔的一端不对称地除去了填充的DNA超结构,纳米流体系统就变得不对称并开始整流离子电流。 ICR的高峰是在DNA填充森林突破之前发现的。此后,纳米流体系统逐渐恢复对称性,并变得不可整流。粗粒度的Poisson-Nernst-Planck模型和1D统计模型的理论结果都很好地支持了实验观察,并且进一步建立了ICR效应与不同分子填充结构的不对称程度之间的定量相关性。基于ICR属性,我们开发了用于感知ATP的概念验证演示,称为ATP平衡。这些发现有助于阐明ICR的起源,并显示出对未来创新的纳米流体装置和材料的其他不对称转运现象的影响。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第51期|18739-18746|共8页
  • 作者单位

    Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;

    Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;

    College of Energy, Xiamen University, Xiamen, Fujian 361005, P. R. China;

    School of Physics, Peking University, Beijing 100871, P. R. China;

    College of Energy, Xiamen University, Xiamen, Fujian 361005, P. R. China;

    Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;

    Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;

    Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:08:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号