首页> 外文期刊>Journal of the American Chemical Society >Resolving the NFκB Heterodimer Binding Paradox: Strain and Frustration Guide the Binding of Dimeric Transcription Factors
【24h】

Resolving the NFκB Heterodimer Binding Paradox: Strain and Frustration Guide the Binding of Dimeric Transcription Factors

机译:解决NFκB异二聚体结合悖论:应变和沮丧指导二聚转录因子的结合。

获取原文
获取原文并翻译 | 示例
       

摘要

Many eukaryotic transcription factors function after forming oligomers. The choice of protein partners is a nonrandom event that has distinct functional consequences for gene regulation. In the present work we examine three dimers of transcription factors in the NFκB family: p50p50, p50p65, and p65p65. The NFκB dimers bind to a myriad of genomic sites and switch the targeted genes on or off with precision. The p65p50 heterodimer of NFκB is the strongest DNA binder, and its unbinding is controlled kinetically by molecular stripping from the DNA induced by IκB. In contrast, the homodimeric forms of NFκB, p50p50 and p65p65, bind DNA with significantly less affinity, which places the DNA residence of the homodimers under thermodynamic rather than kinetic control. It seems paradoxical that the heterodimer should bind more strongly than either of the symmetric homodimers since DNA is a nearly symmetric target. Using a variety of energy landscape analysis tools, here we uncover the features in the molecular architecture of NFκB dimers that are responsible for these drastically different binding free energies. We show that frustration in the heterodimer interface gives the heterodimer greater conformational plasticity, allowing the heterodimer to better accommodate the DNA. We also show how the elastic energy and mechanical strain in NFκB dimers can be found by extracting the principal components of the fluctuations in Cartesian coordinates as well as fluctuations in the space of physical contacts, which are sampled via simulations with a predictive energy landscape Hamiltonian. These energetic contributions determine the specific detailed mechanisms of binding and stripping for both homo- and heterodimers.
机译:许多真核转录因子在形成寡聚体后起作用。蛋白质伴侣的选择是一个非随机事件,会对基因调节产生明显的功能影响。在目前的工作中,我们研究了NFκB家族中转录因子的三个二聚体:p50p50,p50p65和p65p65。 NFκB二聚体与无数的基因组位点结合,并精确地打开或关闭目标基因。 NFκB的p65p50异二聚体是最强的DNA结合物,其脱结合是通过分子分离从IκB诱导的DNA来动力学控制的。相反,NFκB,p50p50和p65p65的同型二聚体结合DNA的亲和力要低得多,这使同型二聚体的DNA停留在热力学而非动力学控制之下。似乎矛盾的是,异源二聚体应比任一对称同二聚体更牢固地结合,因为DNA是几乎对称的靶标。在这里,我们使用各种能量景观分析工具来揭示NFκB二聚体分子结构中的特征,这些特征负责这些截然不同的结合自由能。我们显示,异二聚体界面中的挫折感使异二聚体具有更大的构象可塑性,使异二聚体能够更好地适应DNA。我们还展示了如何通过提取笛卡尔坐标中的涨落以及物理接触空间中的涨落的主要成分来找到NFκB二聚体中的弹性能和机械应变,这些主要成分是通过使用预测性能量景观哈密顿量进行模拟来采样的。这些有力的贡献决定了同二聚体和异二聚体的结合和剥离的具体详细机制。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第51期|18558-18566|共9页
  • 作者单位

    Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States,Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States;

    Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States;

    Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States;

    Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States;

    Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:08:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号