首页> 外文期刊>Journal of the American Chemical Society >In Situ Electron Microscopy of Plasmon-Mediated Nanocrystal Synthesis
【24h】

In Situ Electron Microscopy of Plasmon-Mediated Nanocrystal Synthesis

机译:等离子体介导的纳米晶体合成的原位电子显微镜

获取原文
获取原文并翻译 | 示例
       

摘要

Chemical processes driven by nonthermal energy (e.g., visible light) are attractive for future approaches to energy conversion, synthesis, photocatalysis, and so forth. The growth of anisotropic metal nanostructures mediated by excitation of a localized surface plasmon resonance (LSPR) is a prototype example of such a reaction. Important aspects, notably the growth mechanism and a possible role of plasmonic "hot spots" within the metal nanostructures, remain poorly understood. Here, we use in situ electron microscopy to stimulate and image the plasmon-mediated growth of triangular Ag nanoprisms in solution. The quantification of the time-dependent evolution of the lateral size and thickness of the nanoprisms, enabled by nanometer-scale real-time microscopy in solution, shows a transition from an early stage of uniform Ag° incorporation exclusively in the prism side facets to a size regime with accelerated growth in thickness. Differences in attachment rate at this advanced stage correlate with local plasmonic field enhancements, which allows determining the range over which charge carriers transferred from plasmonic hot spots can drive chemistry. Such data support the development of nonthermal chemical processes that depend on plasmonic light harvesting and the transfer of nonequilibrium charge carriers.
机译:由非热能(例如可见光)驱动的化学过程对于能量转化,合成,光催化等的未来方法具有吸引力。由局部表面等离子体共振(LSPR)的激发介导的各向异性金属纳米结构的生长是这种反应的原型实例。重要方面,特别是金属纳米结构内的等离子体“热点”的生长机理和可能的作用,仍然知之甚少。在这里,我们使用原位电子显微镜刺激和成像溶液中的等离激元介导的三角形Ag纳米棱镜的生长。纳米级实时显微镜在溶液中对纳米棱镜的横向尺寸和厚度随时间的演变进行量化,显示出从仅在棱镜侧面上均匀掺入Ag°的早期阶段过渡到尺寸机制,并加快了厚度。在这个高级阶段,附着速率的差异与局部等离子体场的增强相关,这可以确定从等离子体热点转移的电荷载流子可以驱动化学反应的范围。这样的数据支持了非热化学过程的发展,该过程依赖于等离子体光的收集和非平衡电荷载流子的转移。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第19期|6771-6776|共6页
  • 作者单位

    Department of Electrical & Computer Engineering;

    Department of Electrical & Computer Engineering;

    Department of Electrical & Computer Engineering;

    Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号