首页> 外文期刊>Journal of the American Chemical Society >Redox-Active Macrocycles for Organic Rechargeable Batteries
【24h】

Redox-Active Macrocycles for Organic Rechargeable Batteries

机译:有机可充电电池的氧化还原活性大环化合物

获取原文
获取原文并翻译 | 示例
       

摘要

Organic rechargeable batteries, composed of redox-active molecules, are emerging as candidates for the next generation of energy storage materials because of their large specific capacities, cost effectiveness, and the abundance of organic precursors, when compared with conventional lithium-ion batteries. Although redox-active molecules often display multiple redox states, precise control of a molecule's redox potential, leading to a single output voltage in a battery, remains a fundamental challenge in this popular field of research. By combining macrocyclic chemistry with density functional theory calculations (DFT), we have identified a structural motif that more effectively delocalizes electrons during lithiation events in battery operations-namely, through-space electron delocalization in triangular macrocyclic molecules that exhibit a single well-defined voltage profile-compared to the discrete multiple voltage plateaus observed for a homologous macrocyclic dimer and an acyclic derivative of pyromellitic diimide (PMDI). The triangular macrocycle, incorporating three PMDI units in close proximity to one another, exhibits a single output voltage at 2.33 V, compared with two peaks at (ⅰ) 2.2 and 1.95-1.60 V for reduction and (ⅱ) 1.60-1.95 and 2.37 V for oxidation of the acyclic PMDI derivative. By investigating the two cyclic derivatives with different conformational dispositions of their PMDI units and the acyclic PMDI derivative, we identified noticeable changes in interactions between the PMDI units in the two cyclic derivatives under reducing conditions, as determined by differential pulse voltammetry, solution-state spectroelectrochemistry, and variable-temperature UV-Vis spectra. The numbers and relative geometries of the PMDI units are found to alter the voltage profile of the active materials significantly during galvanostatic measurements, resulting in a desirable single plateau for the triangular macrocycle. The present investigation reveals that understanding and controlling the relative conformational dispositions of redox-active units in macrocycles are key to achieving high energy density and long cycle-life electrodes for organic rechargeable batteries.
机译:与传统的锂离子电池相比,由氧化还原活性分子组成的有机可再充电电池因其大的比容量,成本效益以及有机前体的丰富性而成为下一代储能材料的候选者。尽管具有氧化还原活性的分子通常会显示多种氧化还原状态,但是精确控制分子的氧化还原电位(导致电池中的单个输出电压)仍然是这一热门研究领域中的一项基本挑战。通过将大环化学与密度泛函理论计算(DFT)结合,我们已经确定了一种结构基序,该结构基序在电池操作的锂化事件期间更有效地使电子离域化,即,在具有单个明确定义的电压的三角形大环分子中,空间电子离域化与同源大环二聚体和均苯四甲二酰亚胺(PMDI)的无环衍生物所观察到的离散多个电压平稳区相比,其分布曲线有所不同。三角形大周期包含三个彼此紧靠的PMDI单元,在2.33 V处显示单个输出电压,而在(ⅰ)2.2和1.95-1.60 V处有两个峰值减少,在(ⅱ)1.60-1.95和2.37 V处有两个峰值用于氧化无环PMDI衍生物。通过研究两个环状衍生物的PMDI单元和非环状PMDI衍生物的构象不同,我们确定了在还原条件下两个环状衍生物的PMDI单元之​​间相互作用的显着变化,这通过差分脉冲伏安法,溶液态光谱电化学法测定,以及可变温度的UV-Vis光谱。发现PMDI单元的数量和相对几何形状在恒电流测量期间显着改变活性材料的电压分布,从而导致三角形大环的理想单平台。本研究表明,了解和控制大环化合物中氧化还原活性单元的相对构象排列对于获得高能量密度和长循环寿命的有机可充电电池电极至关重要。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第19期|6635-6643|共9页
  • 作者单位

    Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States;

    Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States;

    Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States;

    Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States;

    Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States;

    Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States;

    Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号