首页> 外文期刊>Journal of the American Chemical Society >Exciton Absorption Spectra by Linear Response Methods: Application to Conjugated Polymers
【24h】

Exciton Absorption Spectra by Linear Response Methods: Application to Conjugated Polymers

机译:线性响应方法的激子吸收光谱:在共轭聚合物中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

The theoretical description of the time-evolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016,144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to the excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhesyloxy)-1,4-phenyl-enevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron fonnation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further developments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.
机译:激子时间演化的理论描述需要第一步,即频谱计算,由于常规算法的计算量大且常见的密度函数导致精度问题,因此大多数用户无法使用。以前(J. Chem。Phys。2016,144,204105),我们开发了一种解决这些问题的简单方法。我们的方案基于两步计算,其中线性响应TDDFT计算用于生成受激子状态扰动的轨道,然后第二线性响应TDDFT计算用于确定相对于激子的激发谱州。在这里,我们运用这一理论研究了泛在共轭聚合物聚(3-己基噻吩)(P3HT),聚(2-甲氧基-5-(2-乙基乙基氧)-1,4-的低聚物中激子的近红外吸收光谱苯基-亚乙烯基)(MEH-PPV)和聚(苯并二噻吩-噻吩并[3,4-b]噻吩)(PTB7)。对于P3HT和MEH-PPV低聚物,计算得出的强吸收带在10个单体单元的最长波长处会聚,并且与实验测量结果显示出很强的一致性。计算结果证实,MEH-PPV中的激子光谱特征与双极化子形式的激子光谱特征重叠。此外,我们的计算还确定了由我们小组针对PTB7的低聚物(1、2和3个单元)测得的瞬态吸收光谱中的激子吸收带。对于所有研究的案例,我们报告了主要的轨道激发对光学活性激发态-激发态跃迁的贡献,并提出了一个简单的规则来识别最长波长处的吸收峰。我们建议我们的方法可以考虑用于理论瞬态光谱学的进一步发展,以包括非绝热效应,相干性,并描述诸如电荷转移态和极化子对之类的物质的形成。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第10期|3728-3735|共8页
  • 作者单位

    Department of Chemistry and the Materials Research Center;

    Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States;

    Department of Chemistry and the Materials Research Center;

    Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States, Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States;

    Department of Chemistry and the Materials Research Center;

    Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States;

    Department of Chemistry and the Materials Research Center;

    Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States;

    Department of Chemistry and the Materials Research Center;

    Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States, Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States;

    Department of Chemistry and the Materials Research Center;

    Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States;

    Department of Chemistry and the Materials Research Center;

    Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号