首页> 外文期刊>Journal of the American Chemical Society >Drawing Catalytic Power from Charge Separation: Stereoelectronic and Zwitterionic Assistance in the Au(l)-Catalyzed Bergman Cyclization
【24h】

Drawing Catalytic Power from Charge Separation: Stereoelectronic and Zwitterionic Assistance in the Au(l)-Catalyzed Bergman Cyclization

机译:从电荷分离中汲取催化力:Au(l)催化的Bergman环化中的立体电子和两性离子辅助。

获取原文
获取原文并翻译 | 示例
       

摘要

The synergy between bond formation and bond breaking that is typical for pericyclic reactions is lost in their mechanistic cousins, cycloaromatization reactions. In these reactions, exemplified by the Bergman cyclization (BC), two bonds are sacrificed to form a single bond, and the reaction progress is interrupted at the stage of a cyclic diradical intermediate. The catalytic power of Au(I) in BC stems from a combination of two sources: stereoelectronic assistance of C-C bond formation (i.e., "LUMO umpolung") and crossover from a diradical to a zwitterionic mechanism that takes advantage of the catalyst's dual ability to stabilize both negative and positive charges. Not only does the synergy between the bond-forming and charge-delocalizing interactions lead to a dramatic (>hundred-billion-fold) acceleration, but the evolution of the two effects results in continuous reinforcement of the substrate/catalyst interaction along the cyclization path. This cooperativity converts the BC into the first example of an aborted [3,3] sigmatropic shift where the pericyclic "transition state" becomes the most stable species on the reaction hypersurface. Aborting the pericyclic path facilitates trapping of cyclic intermediate by a variety of further reactions and provides a foundation for the discovery of new modes of reactivity of polyunsaturated substrates. The application of distortion/interaction analysis allows us to quantify the increased affinity of Au-catalysts to the Bergman cyclization transition state as one of the key components of the large catalytic effect.
机译:在键合形成和键断裂之间的协同作用(通常是周环反应)在其机械表亲,环芳构化反应中丢失。在这些反应中,以伯格曼环化(BC)为例,两个键被牺牲形成一个单键,并且反应进程在环状双自由基中间体阶段被中断。 Au(I)在BC中的催化能力源于两种来源的结合:CC键形成的立体电子辅助(即“ LUMO umpolung”)和利用催化剂的双重能力从双自由基机理转变为两性离子机理。稳定负电荷和正电荷。形成键和电荷离域相互作用之间的协同作用不仅会导致戏剧性的(>十亿倍)加速,而且两种作用的演变会导致沿环化路径的底物/催化剂相互作用不断增强。这种协同作用将BC转换为中止的[3,3]σ位移的第一个示例,其中周环“过渡态”成为反应超表面上最稳定的物种。中止周环路径有助于通过各种进一步的反应捕获环状中间体,并为发现多不饱和底物的新反应方式提供了基础。畸变/相互作用分析的应用使我们能够量化Au催化剂对Bergman环化过渡态增加的亲和力,这是大催化作用的关键组成部分之一。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第9期|3406-3416|共11页
  • 作者单位

    Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-439, United States;

    Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-439, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号