首页> 外文期刊>Journal of the American Chemical Society >Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications
【24h】

Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications

机译:用于液流电池应用的持久,可循环,低电位电解质的物理有机方法

获取原文
获取原文并翻译 | 示例
       

摘要

The deployment of nonaqueous redox flow batteries for grid-scale energy storage has been impeded by a lack of electrolytes that undergo redox events at as low (anolyte) or high (catholyte) potentials as possible while exhibiting the stability and cycling lifetimes necessary for a battery device. Herein, we report a new approach to electrolyte design that uses physical organic tools for the predictive targeting of electrolytes that possess this combination of properties. We apply this approach to the identification of a new pyridinium-based anolyte that undergoes le~- electrochemical charge-discharge cycling at low potential (-1.21 V vs Fc/Fc~+) to a 95% state-of-charge without detectable capacity loss after 200 cycles.
机译:非水氧化还原液流电池在电网规模的储能方面的应用受到阻碍,因为缺乏电解质,它们在尽可能低的(阳极电解液)或高(阴极电解液)电势下经历氧化还原事件,同时表现出电池所需的稳定性和循环寿命设备。在此,我们报告了一种新的电解质设计方法,该方法使用物理有机工具来预测具有这种特性组合的电解质的目标。我们将这种方法用于鉴定一种新的基于吡啶鎓的阳极电解液,该电解液在低电势下(-1.21 V vs Fc / Fc〜+)经历le-电化学充放电循环,达到95%的荷电状态而无可检测的容量200个周期后的损耗。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第8期|2924-2927|共4页
  • 作者单位

    Joint Center for Energy Storage Research, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States;

    Joint Center for Energy Storage Research, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States,Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States;

    Joint Center for Energy Storage Research, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States;

    Joint Center for Energy Storage Research, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States,Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States;

    Joint Center for Energy Storage Research, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States;

    Joint Center for Energy Storage Research, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States,Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States;

    Joint Center for Energy Storage Research, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States,Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States;

    Joint Center for Energy Storage Research, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号