首页> 外文期刊>Journal of the American Chemical Society >Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence
【24h】

Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence

机译:确定核自旋距离对电子自旋退相干影响的综合方法

获取原文
获取原文并翻译 | 示例
       

摘要

Nuclear-electronic interactions are a fundamental phenomenon which impacts fields from magnetic resonance imaging to quantum information processing (QIP). The realization of QIP would transform diverse areas of research including accurate simulation of quantum dynamics and cryptography. One promising candidate for the smallest unit of QIP, a qubit, is electronic spin. Electronic spins in molecules offer significant advantages with regard to QIP, and for the emerging field of quantum sensing. Yet relative to other qubit candidates, they possess shorter superposition lifetimes, known as coherence times or T_2, due to interactions with nuclear spins in the local environment. Designing complexes with sufficiently long values of T_2 requires an understanding of precisely how the position of nuclear spins relative to the electronic spin center affects decoherence. Herein, we report the first synthetic study of the relationship between nuclear spin-electron spin distance and decoherence. Through the synthesis of four vanadyl complexes, (Ph_4P)_2[VO(C_3H_6S_2)_2] (1), (Ph_4P)_2[VO(C_5H_6S_4)_2] (2), (Ph_4P)_2[VO(C_7H_6S_6)_2] (3), and (Ph_4P)_2[VO(C_9H_6S_8)_2] (4), we are able to synthetically place a spin-laden propyl moiety at well-defined distances from an electronic spin center by employing a spin-free carbon-sulfur scaffold. We interrogate this series of molecules with pulsed electron paramagnetic resonance (EPR) spectroscopy to determine their coherence times. Our studies demonstrate a sharp jump in T_2 when the average V-H distance is decreased from 6.6(6) to 4.0(4) A, indicating that spin-active nuclei sufficiently close to the electronic spin center do not contribute to decoherence. These results illustrate the power of synthetic chemistry in elucidating the fundamental mechanisms underlying electronic polarization transfer and provide vital principles for the rational design of long-coherence electronic qubits.
机译:核电子相互作用是一种基本现象,会影响从磁共振成像到量子信息处理(QIP)的场。 QIP的实现将改变研究的各个领域,包括量子动力学和密码学的精确模拟。电子自旋是QIP最小单位qubit的一个有前途的候选人。分子中的电子自旋在QIP方面以及在新兴的量子传感领域均具有显着优势。但是相对于其他量子位候选者,由于与局部环境中的核自旋相互作用,它们具有较短的叠加寿命,称为相干时间或T_2。设计具有足够长的T_2值的复合物需要准确理解核自旋相对于电子自旋中心的位置如何影响退相干。在这里,我们报道了核自旋电子自旋距离与退相干之间关系的首次综合研究。通过合成四个钒基络合物,(Ph_4P)_2 [VO(C_3H_6S_2)_2](1),(Ph_4P)_2 [VO(C_5H_6S_4)_2](2),(Ph_4P)_2 [VO(C_7H_6S_6)_2]( 3)和(Ph_4P)_2 [VO(C_9H_6S_8)_2](4),我们能够通过使用无旋转的碳硫化合物,在距电子自旋中心一定距离的位置合成放置自旋的丙基部分脚手架。我们用脉冲电子顺磁共振(EPR)光谱对这一系列分子进行询问,以确定它们的相干时间。我们的研究表明,当平均V-H距离从6.6(6)A减小到4.0(4)A时,T_2急剧增加,这表明自旋活性核足够靠近电子自旋中心,对退相干没有贡献。这些结果说明了合成化学在阐明电子极化转移背后的基本机制方面的力量,并为合理设计长相干电子量子比特提供了至关重要的原理。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第8期|3196-3201|共6页
  • 作者单位

    Department of Chemistry;

    Department of Chemistry;

    Department of Chemistry,Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States;

    Department of Chemistry,Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States;

    Department of Chemistry;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号