首页> 外文期刊>Journal of the American Chemical Society >Direct Evidence for Coupled Surface and Concentration Quenching Dynamics in Lanthanide-Doped Nanocrystals
【24h】

Direct Evidence for Coupled Surface and Concentration Quenching Dynamics in Lanthanide-Doped Nanocrystals

机译:镧系元素掺杂纳米晶体表面和浓度猝灭动力学耦合的直接证据

获取原文
获取原文并翻译 | 示例
       

摘要

Luminescence quenching at high dopant concentrations generally limits the dopant concentration to less than 1-5 mol% in lanthanide-doped materials, and this remains a major obstacle in designing materials with enhanced efficiency/brightness. In this work, we provide direct evidence that the major quenching process at high dopant concentrations is the energy migration to the surface (i.e., surface quenching) as opposed to the common misconception of cross-relaxation between dopant ions. We show that after an inert epitaxial shell growth, erbium (Er~(3+)) concentrations as high as 100 mol% in NaY(Er)F_4/NaLuF_4 core/shell nano-crystals enhance the emission intensity of both upconversion and downshifted luminescence across different excitation wavelengths (980, 800, and 658 nm), with negligible concentration quenching effects. Our results highlight the strong coupling of concentration and surface quenching effects in colloidal lanthanide-doped nanocrystals, and that inert epitaxial shell growth can overcome concentration quenching. These fundamental insights into the photophysical processes in heavily doped nanocrystals will give rise to enhanced properties not previously thought possible with compositions optimized in bulk.
机译:在掺杂镧的材料中,高掺杂物浓度下的发光猝灭通常将掺杂物浓度限制为小于1-5 mol%,这在设计具有更高效率/亮度的材料时仍然是主要障碍。在这项工作中,我们提供了直接的证据,表明在高掺杂浓度下的主要淬灭过程是能量迁移到表面(即表面淬灭),这与掺杂离子之间交叉松弛的常见误解相反。我们表明,在惰性外延壳生长之后,NaY(Er)F_4 / NaLuF_4核/壳纳米晶体中(Er〜(3+))的浓度高达100 mol%增强了上转换和下移发光的发射强度在不同的激发波长(980、800和658 nm)范围内,浓度猝灭效应可忽略不计。我们的结果突出了掺杂镧系元素胶体纳米晶体中浓度和表面猝灭效应的强耦合,惰性外延壳的生长可以克服浓度猝灭。对重掺杂纳米晶体中光物理过程的这些基本见解将带来增强的性能,这是以前认为无法通过大量优化的组合物实现的。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第8期|3275-3282|共8页
  • 作者单位

    Skaggs School of Pharmacy and Pharmaceutical Sciences;

    Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States;

    Department of Chemistry, Stanford University, Stanford, California 94305, United States;

    The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Department of Chemistry, Stanford University, Stanford, California 94305, United States;

    Skaggs School of Pharmacy and Pharmaceutical Sciences,Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号