首页> 外文期刊>Journal of the American Chemical Society >Reaction of Criegee Intermediate with Nitric Acid at the Air-Water Interface
【24h】

Reaction of Criegee Intermediate with Nitric Acid at the Air-Water Interface

机译:受激中间体与硝酸在空气-水界面的反应

获取原文
获取原文并翻译 | 示例
       

摘要

The role of aqueous surfaces in promoting atmospheric chemistry is increasingly being recognized. However, the bimolecular chemistries of Criegee intermediates, which influence the tropospheric budget of OH radicals, organic acids, hydroperoxides, nitrates, sulfates, and particulate material, remain less explored on an aqueous surface. Herein we have employed Born–Oppenheimer molecular dynamics simulations and two-layer ONIOM (QM:MM) in an electronic embedding scheme to study the reaction and the spectroscopic signal of anti -CH_(3)CHOO with nitric acid (HNO_(3)) at the air–water interface, which is expected to be an important reaction in polluted urban environments. The results reveal that on the water surface, the HNO_(3)-mediated hydration of anti -CH_(3)CHOO is the most dominant pathway, whereas the traditionally believed direct reaction between anti -CH_(3)CHOO and HNO_(3), which results in the formation of nitrooxyethyl hydroperoxide, is only the minor channel. Both reaction pathways follow a stepwise mechanism at the air–water interface and occur on the picosecond time scale. These new reactions are expected to be relevant in the hazy environments of globally polluted urban regions where nitrates and sulfates are abundantly present. During the hazy period, the high relative humidity and the presence of fog droplets may favor the HNO_(3)-mediated Criegee hydration over the nitrooxyethyl hydroperoxide forming reaction. A similar reaction mechanism with Criegee intermediates could be expected on the water surface for organic acids, which possess HNO_(3)-like functionalities, and may play a role in improving our knowledge of the organic acid budget in the terrestrial equatorial regions and high northern latitudes. The ONIOM calculations suggest that the N–O stretching bands around 1600–1200 cm~(–1) and NO_(2) bending band around 750 cm~(–1) in nitrooxyethyl hydroperoxide could be used as spectroscopic markers for distinguishing it from hydrooxyethyl hydroperoxide on the water surface.
机译:人们越来越认识到水表面在促进大气化学中的作用。但是,Criegee中间体的双分子化学性质影响OH自由基,有机酸,氢过氧化物,硝酸盐,硫酸盐和颗粒物质的对流层收支,因此在水表面上的探索较少。在本文中,我们在电子嵌入方案中采用了Born–Oppenheimer分子动力学模拟和两层ONIOM(QM:MM),以研究反i -CH_(3)CHOO与硝酸(HNO_( 3))在空气-水界面,这有望成为污染城市环境中的重要反应。结果表明,在水表面,HNO_(3)介导的 -CH_(3)CHOO水合是最主要的途径,而传统上认为抗-CH_(3)之间的直接反应CHOO和HNO_(3)只是次要通道,导致形成氢过氧化硝基氧乙基。两种反应路径都在空气-水界面处遵循逐步机制,并且发生在皮秒级的时间范围内。这些新的反应有望与全球污染严重的硝酸盐和硫酸盐大量存在的城市地区的朦胧环境有关。在朦胧期间,相对于过氧化硝基氧乙基过氧化氢,高的相对湿度和雾滴的存在可能有利于HNO_(3)介导的Criegee水化。与Criegee中间体类似的反应机理在有机酸的水表面上有望实现,其具有类似HNO_(3)的功能,并且可能在提高我们对陆地赤道地区和高海拔地区有机酸收支的认识方面发挥作用纬度。 ONIOM计算表明,在氢氧过氧化硝基氧乙基中,N–O伸缩带在1600–1200 cm〜(–1)附近和NO_(2)弯曲带在750 cm〜(–1)附近可以用作区分它与氢氧乙基的光谱标记。在水面上的氢过氧化物。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第14期|4913-4921|共9页
  • 作者单位

    Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States;

    Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States;

    Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States,Department of Chemical & Biomolecular Engineering and Department of Mechanical & Materials Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;

    Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号