首页> 外文期刊>Journal of the American Chemical Society >Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance
【24h】

Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance

机译:通过MnTe合金化GeTe的菱形到立方转变导致超低热导率,电子能带收敛和高热电性能

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, a series of Ge_(1– x )Mn_( x )Te ( x = 0–0.21) compounds were prepared by a melting–quenching–annealing process combined with spark plasma sintering (SPS). The effect of alloying MnTe into GeTe on the structure and thermoelectric properties of Ge_(1– x )Mn_( x )Te is profound. With increasing content of MnTe, the structure of the Ge_(1– x )Mn_( x )Te compounds gradually changes from rhombohedral to cubic, and the known R 3 m to Fm -3 m phase transition temperature of GeTe moves from 700 K closer to room temperature. First-principles density functional theory calculations show that alloying MnTe into GeTe decreases the energy difference between the light and heavy valence bands in both the R 3 m and Fm -3 m structures, enhancing a multiband character of the valence band edge that increases the hole carrier effective mass. The effect of this band convergence is a significant enhancement in the carrier effective mass from 1.44 m _(0) (GeTe) to 6.15 m _(0) (Ge_(0.85)Mn_(0.15)Te). In addition, alloying with MnTe decreases the phonon relaxation time by enhancing alloy scattering, reduces the phonon velocity, and increases Ge vacancies all of which result in an ultralow lattice thermal conductivity of 0.13 W m~(–1) K~(–1) at 823 K. Subsequent doping of the Ge_(0.9)Mn_(0.1)Te compositions with Sb lowers the typical very high hole carrier concentration and brings it closer to its optimal value enhancing the power factor, which combined with the ultralow thermal conductivity yields a maximum ZT value of 1.61 at 823 K (for Ge_(0.86)Mn_(0.10)Sb_(0.04)Te). The average ZT value of the compound over the temperature range 400–800 K is 1.09, making it the best GeTe-based thermoelectric material.
机译:在这项研究中,通过熔化-淬火-退火工艺结合火花等离子体烧结(SPS)制备了一系列的Ge_(1–x)Mn_(x)Te(x = 0-0.21)化合物。将MnTe合金化成GeTe对Ge_(1–x)Mn_(x)Te的结构和热电性能的影响是深远的。随着MnTe含量的增加,Ge_(1–x)Mn_(x)Te化合物的结构从菱面体逐渐变为立方,并且已知的GeTe的R 3 m到Fm -3 m相变温度从700 K移近。到室温。第一性原理密度泛函理论计算表明,将MnTe合金化为GeTe可以减小R 3 m和Fm -3 m结构中轻价带和重价带之间的能量差,从而增强了价带边缘的多带特性,从而增加了空穴载体有效质量。该频带收敛的效果是将载波有效质量从1.44 m _(0)(GeTe)显着提高到6.15 m _(0)(Ge_(0.85)Mn_(0.15)Te)。此外,与MnTe合金化可通过增强合金散射来减少声子弛豫时间,降低声子速度并增加Ge空位,所有这些都导致0.13 W m〜(–1)K〜(–1)的超低晶格导热系数。随后在823 K时以Sb掺杂Ge_(0.9)Mn_(0.1)Te成分会降低典型的非常高的空穴载流子浓度,并使之更接近其最佳值,从而提高了功率因数,并结合了超低导热率,产生了在823 K时的最大ZT值为1.61(对于Ge_(0.86)Mn_(0.10)Sb_(0.04)Te)。该化合物在400–800 K的温度范围内的平均ZT值为1.09,使其成为最好的基于GeTe的热电材料。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第7期|2673-2686|共14页
  • 作者单位

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号