首页> 外文期刊>Journal of the American Chemical Society >Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal-Organic Framework Zn_2(dobpdc)
【24h】

Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal-Organic Framework Zn_2(dobpdc)

机译:金属有机骨架Zn_2(dobpdc)中二氧化碳的意外扩散各向异性

获取原文
获取原文并翻译 | 示例
       

摘要

Metal–organic frameworks are promising materials for energy-efficient gas separations, but little is known about the diffusion of adsorbates in materials featuring one-dimensional porosity at the nanoscale. An understanding of the interplay between framework structure and gas diffusion is crucial for the practical application of these materials as adsorbents or in mixed-matrix membranes, since the rate of gas diffusion within the adsorbent pores impacts the required size (and therefore cost) of the adsorbent column or membrane. Here, we investigate the diffusion of CO_(2) within the pores of Zn_(2)(dobpdc) (dobpdc~(4–) = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. The residual chemical shift anisotropy for pore-confined CO_(2) allows PFG NMR measurements of self-diffusion in different crystallographic directions, and our analysis of the entire NMR line shape as a function of the applied field gradient provides a precise determination of the self-diffusion coefficients. In addition to observing CO_(2) diffusion through the channels parallel to the crystallographic c axis (self-diffusion coefficient D _(∥) = (5.8 ± 0.1) × 10~(–9) m~(2) s~(–1) at a pressure of 625 mbar CO_(2)), we unexpectedly find that CO_(2) is also able to diffuse between the hexagonal channels in the crystallographic ab plane ( D _(⊥) = (1.9 ± 0.2) × 10~(–10) m~(2) s~(–1)), despite the walls of these channels appearing impermeable by single-crystal X-ray crystallography and flexible lattice MD simulations. Observation of such unexpected diffusion in the ab plane suggests the presence of defects that enable effective multidimensional CO_(2) transport in a metal–organic framework with nominally one-dimensional porosity.
机译:金属有机框架是用于节能气体分离的有前途的材料,但对于纳米尺度具有一维孔隙率的材料中吸附物的扩散知之甚少。对于这些材料作为吸附剂或在混合基质膜中的实际应用,了解骨架结构和气体扩散之间的相互作用至关重要,因为吸附剂孔内的气体扩散速率会影响所需的吸附剂尺寸(因此降低成本)。吸附柱或膜。在这里,我们使用脉冲场梯度(PFG)研究了Zn_(2)(dobpdc)(dobpdc〜(4–)= 4,4'-dioxidobiphenyl-3,3'-dicarboxylate)孔中CO_(2)的扩散)核磁共振(NMR)光谱和分子动力学(MD)模拟。孔隙受限的CO_(2)的残留化学位移各向异性使得PFG NMR能够测量不同晶体学方向上的自扩散,并且我们对整个NMR线形作为所施加场梯度的函数的分析提供了对自身的精确测定-扩散系数。除了观察到CO_(2)通过平行于晶体学c轴的通道的扩散之外(自扩散系数D _(∥)=(5.8±0.1)×10〜(–9)m〜(2)s〜(– 1)在625 mbar CO_(2)的压力下,我们意外地发现CO_(2)还能在晶体ab平面的六边形通道之间扩散(D _(⊥)=(1.9±0.2)×10 〜(–10)m〜(2)s〜(–1)),尽管这些通道的壁在单晶X射线晶体学和柔性点阵MD模拟中似乎是不可渗透的。在ab平面上观察到这种意外扩散,表明存在缺陷,这些缺陷使有效的多维CO_(2)在名义上具有一维孔隙率的金属有机框架中得以传输。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第5期|1663-1673|共11页
  • 作者单位

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States,Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fedérale de Lausanne (EPFL), Rue de l‘Industrie 17, CH-1951 Sion, Switzerland;

    Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, 52062 Aachen, Germany;

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号