首页> 外文期刊>Journal of the American Chemical Society >Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering
【24h】

Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering

机译:通过缺陷工程技术实现无磁滞钙钛矿太阳能电池的通用方法

获取原文
获取原文并翻译 | 示例
       

摘要

Organic–inorganic halide perovskite is believed to be a potential candidate for high efficiency solar cells because power conversion efficiency (PCE) was certified to be more than 22%. Nevertheless, mismatch of PCE due to current density ( J )–voltage ( V ) hysteresis in perovskite solar cells is an obstacle to overcome. There has been much lively debate on the origin of J – V hysteresis; however, effective methodology to solve the hysteric problem has not been developed. Here we report a universal approach for hysteresis-free perovskite solar cells via defect engineering. A severe hysteresis observed from the normal mesoscopic structure employing TiO_(2) and spiro-MeOTAD is almost removed or does not exist upon doping the pure perovskites, CH_(3)NH_(3)PbI_(3) and HC(NH_(2))_(2)PbI_(3), and the mixed cation/anion perovskites, FA_(0.85)MA_(0.15)PbI_(2.55)Br_(0.45) and FA_(0.85)MA_(0.1)Cs_(0.05)PbI_(2.7)Br_(0.3), with potassium iodide. Substantial reductions in low-frequency capacitance and bulk trap density are measured from the KI-doped perovskite, which is indicative of trap-hysteresis correlation. A series of experiments with alkali metal iodides of LiI, NaI, KI, RbI and CsI reveals that potassium ion is the right element for hysteresis-free perovskite. Theoretical studies suggest that the atomistic origin of the hysteresis of perovskite solar cells is not the migration of iodide vacancy but results from the formation of iodide Frenkel defect. Potassium ion is able to prevent the formation of Frenkel defect since K~(+) energetically prefers the interstitial site. A complete removal of hysteresis is more pronounced at mixed perovskite system as compared to pure perovskites, which is explained by lower formation energy of K interstitial (−0.65 V for CH_(3)NH_(3)PbI_(3) vs −1.17 V for mixed perovskite). The developed KI doping methodology is universally adapted for hysteresis-free perovskite regardless of perovskite composition and device structure.
机译:有机-无机卤化物钙钛矿被认为是高效太阳能电池的潜在候选者,因为功率转换效率(PCE)被证明超过22%。然而,由于钙钛矿型太阳能电池中电流密度(J)-电压(V)的滞后而导致的PCE不匹配是克服的障碍。关于J-V磁滞的起源已经有很多热烈的争论。但是,尚未开发出解决磁滞问题的有效方法。在这里,我们报告了一种通过缺陷工程技术解决无磁滞钙钛矿太阳能电池的通用方法。从普通的介观结构中观察到严重的磁滞现象,使用TiO_(2)和spiro-MeOTAD掺杂纯钙钛矿CH_(3)NH_(3)PbI_(3)和HC(NH_(2)时几乎消除或不存在)_(2)PbI_(3)以及混合的阳离子/阴离子钙钛矿FA_(0.85)MA_(0.15)PbI_(2.55)Br_(0.45)和FA_(0.85)MA_(0.1)Cs_(0.05)PbI_(2.7 Br_(0.3),含碘化钾。从KI掺杂的钙钛矿测量到低频电容和体陷阱密度的显着降低,这表明陷阱-滞后相关性。使用LiI,NaI,KI,RbI和CsI的碱金属碘化物进行的一系列实验表明,钾离子是无滞后钙钛矿的正确元素。理论研究表明,钙钛矿型太阳能电池的磁滞现象的原子起源不是碘空位的迁移,而是碘弗伦克尔缺陷形成的结果。钾离子能够防止Frenkel缺陷的形成,因为K〜(+)在能量上更喜欢间隙位置。与纯钙钛矿相比,混合钙钛矿体系中磁滞的完全消除更为明显,这可以通过较低的K间隙形成能来解释(CH_(3)NH_(3)PbI_(3)的-0.65 V和-1.17 V混合钙钛矿)。无论钙钛矿成分和器件结构如何,开发的KI掺杂方法普遍适用于无磁滞的钙钛矿。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第4期|1358-1364|共7页
  • 作者单位

    Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;

    School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea;

    School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea;

    Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;

    Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;

    Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;

    School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号