首页> 外文期刊>Journal of supercomputing >Burst: real-time events burst detection in social text stream
【24h】

Burst: real-time events burst detection in social text stream

机译:突发:实时事件在社交文本流中突发检测

获取原文
获取原文并翻译 | 示例

摘要

Gigantic growth of social media and unbeatable trend of progress in the direction of the web seeking user's interests have generated a storm of social text streams. Seeking information to know the phenomenon of various events in the early stages is quite interesting. Various kinds of social media live streams attract users to participate in real-time events to become a part of an immense crowd. However, the vast amount of text is present on social media, the unnecessary information bogs a social text stream filtering to extract the appropriate topics and events effectively. Therefore, detecting, classifying, and identifying burst events is quite challenging due to the sparse and noisy text of Twitter. The researchers' significant open challenges are the effective cleaning and profound representation of the text stream data. This research article's main contribution is to provide a detailed study and explore bursty event detection in the social text stream. Thus, this work's main motive is to present a concise approach that classifies and detects the event keywords and maintains the record of the event based on related features. These features permit the approach to successfully determine the booming pattern of events scrupulously at different time span. Experiments are conducted and compared with the state-of-the-art methods, which reveals that the proposed approach is proficient to detect valuable patterns of interest and also achieve better scoresto extract burst events on social media posted by various users.
机译:社交媒体的巨大增长和在寻求用户兴趣的网络方向上的无法识别的进步趋势已经产生了社会文本流的风暴。寻求信息知道早期阶段中各种事件的现象非常有趣。各种社交媒体活溪吸引用户参加实时事件,成为巨大人群的一部分。但是,社交媒体上存在大量文本,不必要的信息扰乱了社交文本流过滤,以有效地提取适当的主题和事件。因此,由于Twitter的稀疏和嘈杂的文本,检测,分类和识别突发事件非常具有挑战性。研究人员的重大开放挑战是文本流数据的有效清洁和深刻表示。本研究文章的主要贡献是提供详细的研究,并探索社会文本流中的爆发事件检测。因此,这项工作的主要动机是提出一种简明的方法,可以根据相关的功能来介绍分类和检测事件关键字并维护事件的记录。这些特征允许在不同的时间跨度成功地确定事件的蓬勃发展的方法。与最先进的方法进行了实验,并揭示了所提出的方法精通检测有价值的感兴趣模式,并在各种用户发布的社交媒体上实现更好的Scoresto提取突发事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号