首页> 外文期刊>Journal of supercomputing >Efficient hybrid algorithm based on genetic with weighted fuzzy rule for developing a decision support system in prediction of heart diseases
【24h】

Efficient hybrid algorithm based on genetic with weighted fuzzy rule for developing a decision support system in prediction of heart diseases

机译:基于遗传算法的高效混合算法,以加权模糊规则开发在心脏病预测中的决策支持系统

获取原文
获取原文并翻译 | 示例

摘要

In this article, the clinical decision support system is discussed under the weighted fuzzy rule approach and genetic algorithm for computer-aided heart disease determination. The problem of feature selection is solved by the answers formulated from the stochastic inquiry from the genetic algorithm. In this, the weighed fuzzy framework is built by the application of certain major highlights selected from the datasets. In this, the proposed framework adopted favorable positions by the fuzzy rule strategy and the leaning of the fuzzy approach is being successful by the application of offered weighed methodology activity. At last, the risk forecasting outcomes from the experimentation on UCI machine learning source and supercomputing techniques are assured in our proposed clinical decision support system is enhanced essentially when contrasted with other frameworks in terms of sensitivity specificity, sensitivity, and accuracy.
机译:在本文中,根据加权模糊规则方法和遗传算法讨论了临床决策支持系统,用于计算机辅助心脏病测定。 特征选择问题由来自遗传算法的随机查询中配制的答案来解决。 在此,通过应用从数据集中选择的某些主要亮点的应用构建了称重的模糊框架。 在这方面,拟议的框架通过模糊规则战略采用了有利的位置,并且模糊方法的倾斜是通过提供的称重方法活动的应用成功。 最后,在我们提出的临床决策支持系统中确保了从UCI机器学习源和超级计算技术进行实验的风险预测结果,基本上与敏感性特异性,灵敏度和准确性的其他框架对比时基本上增强了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号