首页> 外文期刊>Journal of supercomputing >Forecasting air passenger traffic flow based on the two-phase learning model
【24h】

Forecasting air passenger traffic flow based on the two-phase learning model

机译:基于两阶段学习模型的空中客运流量预测

获取原文
获取原文并翻译 | 示例

摘要

The future airports will head toward a highly intelligent direction, like the unmanned check-in services, while the scale and resources allocation of the ground service are tightly related to the air passenger flow. Therefore, forecasting passenger flow accurately will affect the development of future airports and the optimization of service of civil airlines significantly. As a kind of time series, air passenger flow is influenced by multiple factors, particularly, the stochastic part of seasonality, trend and volatility. These will ultimately affect the accuracy of the prediction. Therefore, this paper introduces a prediction model based on a two-phase learning framework. In phase one, various predictors cope with different features of time series in parallel and the prediction results are integrated in phase two. Furthermore, this paper has compared principal error indicators with actual data and results show that the two-phase learning model performs better than current fusion models and owns stable performance.
机译:未来的机场将朝向高度智能化的方向,如无人登记服务,而地面服务的规模和资源分配与空气客流紧密相关。因此,预测客流准确将影响未来机场的发展和大量航空公司服务的优化。作为一种时间序列,空气客运流量受到多种因素的影响,特别是季节性,趋势和波动的随机部分。这些最终会影响预测的准确性。因此,本文介绍了基于两相学习框架的预测模型。在阶段,各种预测器并行地应对时间序列的不同特征,并且预测结果集成在阶段。此外,本文对实际数据进行了比较了主误差指标,结果表明,两相学习模型比当前融合模型更好,拥有稳定的性能。

著录项

  • 来源
    《Journal of supercomputing》 |2021年第5期|4221-4243|共23页
  • 作者单位

    Sichuan Univ Coll Elect & Informat Engn Chengdu Sichuan Peoples R China;

    Second Res Inst CAAC Chengdu Sichuan Peoples R China|Civil Aviat Logist Technol Co Ltd Chengdu Sichuan Peoples R China;

    Second Res Inst CAAC Chengdu Sichuan Peoples R China|Civil Aviat Logist Technol Co Ltd Chengdu Sichuan Peoples R China;

    Second Res Inst CAAC Chengdu Sichuan Peoples R China|Civil Aviat Logist Technol Co Ltd Chengdu Sichuan Peoples R China;

    Second Res Inst CAAC Chengdu Sichuan Peoples R China|Civil Aviat Logist Technol Co Ltd Chengdu Sichuan Peoples R China;

    Sichuan Univ Coll Elect & Informat Engn Chengdu Sichuan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Air passenger traffic flow; Two-phase learning model; Stochastic volatility; Fusion models; Forecasting method;

    机译:空气客运流量;两阶段学习模型;随机波动率;融合模型;预测方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号