首页> 外文期刊>Journal of supercomputing >A new and fast rival genetic algorithm for feature selection
【24h】

A new and fast rival genetic algorithm for feature selection

机译:一种新的和快速竞争对手的特征选择遗传算法

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is one of the significant steps in classification tasks. It is a pre-processing step to select a small subset of significant features that can contribute the most to the classification process. Presently, many metaheuristic optimization algorithms were successfully applied for feature selection. The genetic algorithm (GA) as a fundamental optimization tool has been widely used in feature selection tasks. However, GA suffers from the hyperparameter setting, high computational complexity, and the randomness of selection operation. Therefore, we propose a new rival genetic algorithm, as well as a fast version of rival genetic algorithm, to enhance the performance of GA in feature selection. The proposed approaches utilize the competition strategy that combines the new selection and crossover schemes, which aim to improve the global search capability. Moreover, a dynamic mutation rate is proposed to enhance the search behaviour of the algorithm in the mutation process. The proposed approaches are validated on 23 benchmark datasets collected from the UCI machine learning repository and Arizona State University. In comparison with other competitors, proposed approach can provide highly competing results and overtake other algorithms in feature selection.
机译:特征选择是分类任务中的重要步骤之一。它是一种预处理步骤,用于选择可以为分类过程提供最大的重要特征的小型子集。目前,已成功应用了许多成型优化算法以进行特征选择。作为基本优化工具的遗传算法(GA)已广泛用于特征选择任务。然而,GA遭受了封路数据设定,高计算复杂性和选择操作的随机性。因此,我们提出了一种新的竞争对手遗传算法,以及竞争遗传算法的快速版本,以增强特征选择的GA的性能。拟议的方法利用了结合新的选择和交叉方案的竞争策略,旨在提高全球搜索能力。此外,提出了一种动态突变率来增强突变过程中算法的搜索行为。拟议的方法是从UCI机器学习储存库和亚利桑那州立大学收集的23个基准数据集进行验证。与其他竞争对手相比,所提出的方法可以提供高度竞争的结果并超越特征选择中的其他算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号