首页> 外文期刊>Journal of supercomputing >A cloud computing framework for analysis of agricultural big data based on Dempster-Shafer theory
【24h】

A cloud computing framework for analysis of agricultural big data based on Dempster-Shafer theory

机译:基于Dempster-Shafer理论的农业大数据分析云计算框架

获取原文
获取原文并翻译 | 示例

摘要

This paper aims to extract optimal location for cultivating orange trees. In order to reach this goal, a combination of Dempster-Shafer theory (DST) and cloud computing is proposed. The DST method is applied to make weights for input parameters, and cloud computing is used for creating a cost-effective integrated solution on collected information of different geographic regions. To do this, eight parameters including minimum and maximum temperatures, aspect, elevation, growing degree days, rainfall, relative humidity, solar radiation and slope are incorporated to determine the most optimal region for orange cultivation. Moreover, interpolation maps for each parameter are determined with using the inverse distance weighting model in a geographic information system software. The DST model as a novel method for the determination of land suitability is eventually applied in the MATLAB software environment to complete the performance evaluation. Three confidence levels are set as 99.5%, 99% and 95% such that the final results for each confidence level are compared accordingly. It will be shown that the proposed method is successful in predicting suitable locations for the cultivation of oranges by generating different maps at various degrees of confidence.
机译:本文旨在提取培养橙树的最佳位置。为了达到这一目标,提出了Dempster-Shafer理论(DST)和云计算的组合。 DST方法应用于输入参数的权重,并且云计算用于在不同地理区域的收集信息中创建经济有效的集成解决方案。为此,包括最小和最高温度,方面,高程,度天,降雨,相对湿度,太阳辐射和斜坡,包括八个参数,以确定橙色栽培的最佳区域。此外,使用地理信息系统软件中的逆距离加权模型来确定每个参数的插值映射。 DST模型作为确定土地适用性的新方法最终应用于Matlab软件环境,以完成性能评估。三个置信水平设定为99.5%,99%和95%,以便相应地比较每个置信水平的最终结果。结果表明,该方法通过在各种置信度上产生不同的地图来预测用于培养橙子的合适位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号