首页> 外文期刊>Journal of supercomputing >Building a fuzzy logic-based McCulloch-Pitts Neuron recommendation model to uplift accuracy
【24h】

Building a fuzzy logic-based McCulloch-Pitts Neuron recommendation model to uplift accuracy

机译:构建基于模糊的基于逻辑的McCulloch-Pitts神经元推荐模型来提升精度

获取原文
获取原文并翻译 | 示例

摘要

Recommender system is one of the most popular technique used for information filtering. It helps in discovering hidden knowledge patterns from a large set of ubiquitous products and services. The most popular approaches such as collaborative filtering suffers from the complication of data sparsity, overspecification and high computation complexity when dataset drifts from scarcity to abundance. In this regard, we developed a hybrid model that contemplates between accuracy and computation time in order to generate a real-time most relevant items for the users. We made use of imputation technique, fuzzy logic using novel similarity technique and McCulloch-Pitts(MP) Neuron to cope up with aforementioned complications. The experimental evaluation on MovieLens dataset shows that the proposed model yields high efficiency and effectiveness. We tested the resultant classification accuracy of our proposed model using precision, recall and f1-score.
机译:推荐系统是用于信息过滤的最流行的技术之一。它有助于发现来自一系列无处不在的产品和服务的隐藏知识模式。当数据集从稀缺到丰富的稀缺漂移时,诸如协作过滤的最流行的方法遭受数据稀疏,过度分配和高计算复杂性的复杂性。在这方面,我们开发了一种混合模型,其考虑了准确性和计算时间,以便为用户生成实时最相关的项目。我们利用了使用新颖的相似性技术和McCulloch-pitts(MP)神经元的模糊逻辑,以应对上述并发症。 Movielens数据集的实验评估表明,所提出的模型产生高效率和有效性。我们使用精度,召回和F1分数测试了我们所提出的模型的结果分类准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号