首页> 外文期刊>Journal of supercomputing >Parallelized path-based search for constraint satisfaction in autonomous cognitive agents
【24h】

Parallelized path-based search for constraint satisfaction in autonomous cognitive agents

机译:基于基于路径的基于限制性的自治认知代理的约束满足

获取原文
获取原文并翻译 | 示例

摘要

Cognitive agents are typically utilized in autonomous systems for automated decision making. With the widespread use of autonomous systems in complex environments, the need for real-time cognitive agents is essential. Cognitive agents are more capable when they are able to process larger amounts of information to make more informed and intelligent decisions. The solution search space for cognitive agents increases exponentially with large volumes of varied data. In this paper, we present the parallelization of the knowledge-mining component of a cognitive agent that can be programmed to reason like humans. This study examined a novel high-performance path-based forward checking algorithm on 128 compute nodes at the Ohio Supercomputing Center (768 cores) to achieve a speedup of over 200 times compared to a serial implementation of our algorithm. The serial implementation is around 10-25 times faster than a conventional Java-based constraint solver at generating the first solution.
机译:认知剂通常用于自动化系统以进行自动决策。随着自主系统在复杂环境中的广泛使用,对实时认知剂的需求至关重要。当他们能够处理更大的信息以进行更明智和智能决策时,认知剂更有能力。用于认知剂的解决方案搜索空间随着大量的多种数据量增加。在本文中,我们介绍了可以被编程为人类的认知剂的知识挖掘成分的并行化。本研究检测了俄亥俄州超级计算中心(768核心)的128个计算节点的基于高性能路径的前向检查算法,与我们算法的串行实现相比,实现了超过200倍的加速。串行实现比在生成第一个解决方案时比传统的Java的约束求解器快10-25倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号