首页> 外文期刊>Journal of supercomputing >Robust parallel hybrid artificial bee colony algorithms for the multi-dimensional numerical optimization
【24h】

Robust parallel hybrid artificial bee colony algorithms for the multi-dimensional numerical optimization

机译:坚固的平行混合人工蜂菌落算法,用于多维数值优化

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a set of new robust parallel hybrid metaheuristic algorithms based on artificial bee colony (ABC) and teaching learning-based optimization (TLBO) for the multi-dimensional numerical problems. The best practices of ABC and TLBO are implemented to provide robust algorithms on a distributed memory computation environment using MPI libraries. Island parallel versions of the proposed hybrid algorithm are observed to obtain much better results than those of sequential versions. Parallel pseudorandom number generators are used to provide diverse solution candidates to prevent stagnation into local optima. The performances of the proposed hybrid algorithms are compared with eight different metaheuristics algorithms of particle swarm optimization, differential evolution variants, ABC variants and evolutionary algorithm. The empirical results show that the new hybrid parallel algorithms are scalable and the best performing algorithms when compared to the state-of-the-art metaheuristics.
机译:本研究提出了一系列基于人工蜂菌落(ABC)的新的鲁棒平行混合成血管算法,并对基于学习的优化(TLBO)进行多维数值问题。 ABC和TLBO的最佳实践被实施为使用MPI库的分布式内存计算环境中提供强大的算法。观察到所提出的混合算法的岛屿并行版本,以获得比顺序版本更好的结果。并行伪随机数发电机用于提供各种解决方案候选者,以防止停滞在本地最佳状态。将所提出的混合算法的性能与粒子群优化,差分演化变体,ABC变体和进化算法的八种不同的血培术算法进行了比较。经验结果表明,与最先进的综述相比,新的混合并行算法是可扩展的,并且是最佳性能的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号