首页> 外文期刊>Journal of supercomputing >Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG
【24h】

Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG

机译:基于机器学习和基于物联网心律失常的ECG统计和动态特征的诊断

获取原文
获取原文并翻译 | 示例

摘要

Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of cardiac arrhythmia diseases. An IoT platform for prediction of cardiovascular disease using an IoT-enabled ECG telemetry system acquires the ECG signal, processes the ECG signal and alerts physician for an emergency. It is helpful for the physician to analyze the heart disease as early and accurate. We are developing an IoT-enabled ECG monitoring system to analyze the ECG signal. The statistical features of raw ECG signal are calculated. The ECG signal is analyzed using Pan Tompkins QRS detection algorithm for obtaining the dynamic features of the ECG signal. The system is used to find the RR intervals from ECG signal to capture heart rate variability features. The statistical and dynamic features are then applied to the classification process to classify the cardiac arrhythmia disease. People can check their cardiac condition by the acquisition of ECG signal even in their home. The size of the system is small, and it requires less maintenance and operational cost. It is helpful for the physician to analyze the heart disease as easily and accurately.
机译:心律失常是一种危及生命的疾病,导致患者的严重健康问题。及时诊断心律失常疾病将有助于挽救生命。事物互联网(物联网)确保通过连续,远程和非侵入性的心律失常疾病进行现代化医疗部门。使用ENA的ECG遥测系统预测心血管疾病的IOT平台获取ECG信号,处理ECG信号并警告医生进行紧急情况。医生尽早分析心脏病是有帮助的。我们正在开发一个能够的ECG监控系统来分析ECG信号。计算原始ECG信号的统计特征。使用PAN TOMPKINS QRS检测算法进行分析ECG信号,用于获得ECG信号的动态特征。该系统用于从ECG信号找到RR间隔,以捕获心率变异性功能。然后将统计和动态特征应用于分类过程以对心律失常疾病进行分类。人们即使在他们的家中也可以通过收购ECG信号来检查他们的心脏病。系统的大小很小,它需要更少的维护和运营成本。医生可以轻松准确地分析心脏病是有帮助的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号