首页> 外文期刊>Journal of supercomputing >Spatial air index with neighbor information for processing k-nearest neighbor searches in IoT mobile computing
【24h】

Spatial air index with neighbor information for processing k-nearest neighbor searches in IoT mobile computing

机译:具有邻居信息的空中指数,用于处理IOT移动计算中的K-Collect邻居搜索

获取原文
获取原文并翻译 | 示例

摘要

In the Internet of thing (IoT), with the geographic location of geospatial sensor data and the global positioning systems, location-based services (LBSs) can provide powerful location-aware IoT applications for mobile clients according to their current locations. For LBSs, ak-nearest neighbor (kNN) search can provide a mobile client with geospatial sensor data ofk-nearest spatial points of interest (POIs) according to its current location. In this paper, we propose a spatial air index with neighbor information to organize IoT geospatial sensor data for processing kNN searches in the wireless broadcast systems. Since the answered POIs may be neighbors of each other, we add neighbor information to the index structure, which is interleaved with geospatial sensor data, to speed up the query processing. To avoid unnecessary examination of geospatial sensor data from the wireless channel, the proposed method provides the centroid of geospatial data and the corresponding longest distance between the centroid and geospatial data in the region. With this information, the query processing of a kNN search can quickly determine whether to skip examining this region, saving energy consumption of the mobile device. Performance evaluations have verified that the proposed method outperforms the distributed spatial index.
机译:在物联网(物联网)中,通过地理空间传感器数据和全球定位系统的地理位置,基于位置的服务(LBSS)可以根据其当前位置为移动客户端提供强大的位置感知IoT应用程序。对于LBSS,AK最近邻居(KNN)搜索可以根据其当前位置提供具有用于最近空间的地理空间传感器数据(POI)的移动客户端。在本文中,我们提出了具有邻居信息的空间空间指标,用于组织用于处理knn的IoT地理空间传感器数据在无线广播系统中搜索。由于答案的POI可以是彼此的邻居,因此我们将邻居信息添加到索引结构,该索引结构与地理空间传感器数据交错,以加速查询处理。为避免从无线信道中对地理空间传感器数据进行不必要的检查,所提出的方法提供了地理空间数据的质心和该区域质心和地理空间数据之间的相应最长距离。利用此信息,KNN搜索的查询处理可以快速确定是否跳过检查该区域,从而节省移动设备的能量消耗。性能评估已经验证了所提出的方法优于分布式空间指数。

著录项

  • 来源
    《Journal of supercomputing》 |2020年第8期|6177-6194|共18页
  • 作者单位

    Asia Univ Dept Informat Commun Taichung 41354 Taiwan|China Med Univ China Med Univ Hosp Dept Med Res Taichung 40447 Taiwan;

    Natl Changhua Univ Educ Dept Ind Educ & Technol Changhua 50074 Taiwan;

    Asia Univ Dept Informat Commun Taichung 41354 Taiwan|China Med Univ China Med Univ Hosp Dept Med Res Taichung 40447 Taiwan;

    Natl Taichung Univ Sci & Technol Dept Informat Management Taichung 40401 Taiwan;

    Univ Aizu Sch Comp Sci & Engn Aizu Wakamatsu Fukushima 9658580 Japan;

    Natl Taichung Univ Sci & Technol Dept Informat Management Taichung 40401 Taiwan;

    Asia Univ Dept Informat Commun Taichung 41354 Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Internet of things; k-nearest neighbor search; Location-based services; Mobile computing; Spatial air index;

    机译:东西互联网;k最近邻的搜索;基于位置的服务;移动计算;空间空气指数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号