首页> 外文期刊>Journal of supercomputing >A modified water cycle evolutionary game theory algorithm to utilize QoS for IoT services in cloud-assisted fog computing environments
【24h】

A modified water cycle evolutionary game theory algorithm to utilize QoS for IoT services in cloud-assisted fog computing environments

机译:一种改进的水循环进化博弈论云辅助雾计算环境中的IOT服务QoS

获取原文
获取原文并翻译 | 示例

摘要

Abstract The Internet of Things (IoT) is rapidly gaining popularity as a result of the advancements in portable embedded devices and wireless protocols, enabling a new class of services. On the other hand, edge clouds provide IoT services as a new paradigm called fog computing. As the number of available IoT devices increases, more efficient methods are required to select the optimal combination of services out of several existing candidates in edge clouds while composing more complex IoT workflow tasks. So, cloud-assisted fog computing requires a platform for management, composition and provisioning of IoT services for IoT–cloud integration. Resent works have some weaknesses and did not consider some aspects of fog computing such as low latency, low energy and efficient resource allocation. We propose a cloud-based platform for management of IoT service selection and composition in fog computing to enhance QoS parameters such as bandwidth usage, latency and distributed resource utilization. In particular, we propose a multi-objective evolutionary game theory, enhanced by evaporation-based water cycle algorithm (EG-ERWCA) to optimize CPU usage, power consumption and latency of the IoT workflows in cloud-assisted fog computing environments. Many different real IoT workflows are used for evaluation of the proposed method in comparison with the state-of-art algorithms. Simulation results show that the overall quality of service is improved by 2.66 times compared to rival algorithms.
机译:摘要由于便携式嵌入式设备和无线协议的进步,事物互联网(IOT)正在迅速获得受欢迎程度,从而实现了新的服务。另一方面,边缘云为称为雾计算的新范式提供IOT服务。随着可用物联网设备的数量增加,需要更有效的方法来选择在边缘云中的几个现有候选中的最佳服务组合,同时构成更复杂的IoT工作流任务。因此,云辅助雾计算需要用于IoT-Cloud集成的IoT服务的管理,构图和配置平台。怨恨作品具有一些弱点,并没有考虑雾计算的一些方面,例如低延迟,低能量和有效的资源分配。我们提出了一个基于云的平台,用于管理IoT服务选择和雾计算中的组合,以增强QoS参数,如带宽使用,延迟和分布式资源利用率。特别是,我们提出了一种多目标进化博弈论,通过基于蒸发的水循环算法(例如,ERWCA)来增强,以优化CPU使用,电信管工作流程中的CPU使用率,功耗和延迟。许多不同的真实物联网工作流程用于评估所提出的方法与最先进的算法相比。仿真结果表明,与竞争对手算法相比,整体服务质量提高了2.66倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号