首页> 外文期刊>Journal of supercomputing >Distributed deep learning platform for pedestrian detection on IT convergence environment
【24h】

Distributed deep learning platform for pedestrian detection on IT convergence environment

机译:分布式深度学习平台对IT收敛环境的行人检测

获取原文
获取原文并翻译 | 示例

摘要

IT technology and traditional industries have been combined recently, resulting in IT convergence technology in various fields. Through convergence with the automobile, pedestrian detection technology, in particular, is used in the autonomous navigation control service of autonomous vehicles and also applied in various fields such as intelligent CCTV and robot recognition technology. For pedestrian detection, hierarchical classification and feature vector were used in early stage, and deep learning is under active progress. However, since deep learning for pedestrian detection is time-consuming for processing a large volume of image data, it requires a lot of computing resources, and hence building such a system is very expensive. Therefore, in this paper we shall present a distributed deep learning platform which can easily build a cluster, and execute deep learning process in the distributed cloud environment, while achieving performance improvement in various ways. Our platform provides a convenient interface for easily and efficiently executing the deep learning process in a distributed environment by providing a multilayered system architecture. Our system builds and utilizes computing power in easy and efficient way by leveraging container technique, so-called OS-level virtualization, rather than traditional hypervisor-based virtualization. In our system, we improve the whole performance by exploiting both of data and parameter parallelisms at once and reduce the synchronization overhead by exploiting asynchronous communication for parameter updates. Also, we propose an efficient resource allocation scheme for parameter servers and slaves which can improve the performance from the experiment.
机译:IT技术和传统行业最近已结合,导致各种领域的IT融合技术。通过与汽车的融合,特别是在自动车辆的自主导航控制服务中使用行人检测技术,并且还应用于智能CCTV和机器人识别技术等各种领域。对于行人检测,初期使用分层分类和特征向量,深度学习处于积极进展。然而,由于对行人检测的深度学习是处理大量图像数据的耗时,因此需要大量的计算资源,因此建立这种系统非常昂贵。因此,在本文中,我们将介绍一个分布式的深度学习平台,可以轻松构建一个集群,并在分布式云环境中执行深度学习过程,同时以各种方式实现性能改进。我们的平台通过提供多层系统架构,提供方便的界面,可轻松,有效地在分布式环境中执行深度学习过程。我们的系统通过利用集装箱技术,所谓的OS级虚拟化而不是基于传统的管理程序的虚拟化来构建并利用易于高效的方式来利用计算能力。在我们的系统中,我们通过一次利用数据和参数并行性来提高整个性能,并通过利用用于参数更新的异步通信来降低同步开销。此外,我们为参数服务器和从站提出了有效的资源分配方案,可以从实验中提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号