首页> 外文期刊>Journal of supercomputing >High-performance link-based cluster ensemble approach for categorical data clustering
【24h】

High-performance link-based cluster ensemble approach for categorical data clustering

机译:基于高性能链接的集群集成方法,用于分类数据群集

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the clustering ensembles emerged as a problem solver for extracting the data points into clusters in an efficient way. However, still clustering poses a serious issue due to the presence of imperfect informationwhile partitioning the data into clusters. This creates a serious issue in creating an efficient cluster with cluster ensembles. In this paper, we propose a solution to solve the degradation in clustering during data partitioning. The initial clusters are generated using firefly algorithm. A linked cluster ensemble approach uses similarity measurement using multi-viewpoint and weighted triple quality using entropy measurements that ensembles the data points into clusters. This avoids the problem of local optimum and avoids the issues arise from highdimensional datasets and improve the quality of clustering. Here, the data partitioning is done with bipartite spectral algorithm and similarity measurement. Finally, the artificial neural network is used to generate classified results from the optimized clustered datasets. The experimental results are carried out over UCI repository datasets and the results show that the proposed method attains an effective ensemble clustering with higher clustering accuracy than the conventional ones.
机译:近年来,集群集合作为一个问题解算器,用于以有效的方式将数据点提取到集群中。但是,由于存在不完美的信息,仍然存在严重问题,因为存在不完美的信息,以将数据分成群集。这在创建与群集合奏的高效群集时会产生严重问题。在本文中,我们提出了一种解决数据分区期间聚类的降级的解决方案。使用Firefly算法生成初始集群。链接群集集合方法使用使用多视点和加权三重质量的相似性测量使用熵测量,该熵测量将数据点集成到集群中。这避免了局部最佳问题,避免出现来自高度数据集并提高聚类质量的问题。这里,使用二分谱算法和相似性测量来完成数据分区。最后,人工神经网络用于从优化的聚类数据集生成分类结果。实验结果通过UCI储存库数据集进行,结果表明,所提出的方法达到比传统群体更高的聚类精度的有效集群。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号