首页> 外文期刊>Journal of supercomputing >Mining image frequent patterns based on a frequent pattern list in image databases
【24h】

Mining image frequent patterns based on a frequent pattern list in image databases

机译:基于图像数据库中的频繁模式列表的挖掘图像频繁模式

获取原文
获取原文并翻译 | 示例

摘要

The goal of image mining is to find the useful information hidden in image databases. The 9DSPA-Miner approach uses the Apriori strategy to mine the image database, where each image is represented by the 9D-SPA representation. It presents a reasoning method to reason the unknown spatial relation that satisfies the spatial consistency. However, it may generate invalid candidates with the impossible relations that cannot be found in the 2D space or in the input database. Moreover, in this approach, counting the support of the pattern needs to intersect the associated image sets by searching the index structure, taking a long time. Therefore, in this paper, we propose an approach with a frequent pattern list, which generates all valid candidates of frequent patterns. Based on the frequent pattern list, the proposed approach presents two conditions in the candidate generation for finding frequent spatial patterns to avoid generating impossible candidates. Moreover, the proposed approach uses an additional verification step to further avoid generating impossible spatial relations. Therefore, the proposed approach generates fewer candidates than the 9DSPA-Miner approach, reducing the processing time. The experimental results have verified that the proposed approach outperforms the 9DSPA-Miner approach.
机译:图像挖掘的目标是在图像数据库中找到隐藏的有用信息。 9DSPA-Miner方法使用APRiori策略来挖掘图像数据库,其中每个图像由9D-SPA表示表示。它呈现了一种推理方法,以推理满足空间一致性的未知空间关系。但是,它可能会生成无效的候选候选者,其无法在2D空间或输入数据库中找到无法找到的不可能的关系。此外,在这种方法中,计算模式的支持需要通过搜索索引结构来与相关的图像集相交,需要很长时间。因此,在本文中,我们提出了一种具有频繁模式列表的方法,它会产生频繁模式的所有有效候选。基于频繁的模式列表,所提出的方法在候选生成中提供了两个条件,以寻找频繁的空间模式,以避免产生不可能的候选者。此外,所提出的方法使用额外的验证步骤来进一步避免产生不可能的空间关系。因此,所提出的方法产生比9DSPA矿工方法更少的候选者,从而减少了处理时间。实验结果证实了所提出的方法优于9DSPA矿工方法。

著录项

  • 来源
    《Journal of supercomputing》 |2020年第4期|2597-2621|共25页
  • 作者单位

    Natl Sun Yat Sen Univ Dept Comp Sci & Engn Kaohsiung 80424 Taiwan;

    Asia Univ Dept Informat Commun Taichung 41354 Taiwan|China Med Univ China Med Univ Hosp Dept Med Res Taichung 40447 Taiwan;

    Natl Sun Yat Sen Univ Dept Comp Sci & Engn Kaohsiung 80424 Taiwan;

    Natl Sun Yat Sen Univ Dept Comp Sci & Engn Kaohsiung 80424 Taiwan;

    Natl Sun Yat Sen Univ Dept Comp Sci & Engn Kaohsiung 80424 Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Frequent image patterns; Image databases; Image mining;

    机译:频繁的图像模式;图像数据库;图像挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号