首页> 外文期刊>Journal of supercomputing >Concise feature pyramid region proposal network for multi-scale object detection
【24h】

Concise feature pyramid region proposal network for multi-scale object detection

机译:简明特征金字塔区域提案网络用于多尺度对象检测

获取原文
获取原文并翻译 | 示例

摘要

Object detection is a hot research issue in the field of computer vision. Many methods focus on detecting large objects. And features of small objects are easily weakened or even disappeared after multiple convolution layers. So the detection rate of multi-scale objects is unsatisfied. Aiming at this problem, a concise feature pyramid region proposal network (CFPRPN) is proposed to address the problem of small objects detection in this paper without missing the large objects. In the process of object detection, we propose a new method of adjustment for the object location. So the balanced detection of multi-scale objects is realized. CFPRPN combines image pyramids and feature pyramids. An image pyramid consists of scaled versions of an image and the feature pyramids produce multiple layers' feature maps. They are both conducive to capturing the feature information of small objects in deep convolutional networks. At the same time, proposals of overlapping sizes from different layers are applied to improve the recall rate of multi-scale objects. These series operations are beneficial for CFPRPN to extract better proposals. We experimentally prove that after adding the fine-tuning location, the detection rate of multi-scale object is further improved. The inspiring thing is that refining location method is suitable for most algorithms of object detection.
机译:对象检测是计算机视野领域的热门研究问题。许多方法专注于检测大物体。在多个卷积层后,小物体的特征很容易削弱甚至消失。因此,多尺度对象的检测率不满足。针对这个问题,提出了一个简洁的特征金字塔区域提案网络(CFPRPN)来解决本文中的小物体检测的问题而不缺少大物体。在对象检测过程中,我们提出了一种对目标位置的新调整方法。因此实现了多尺度对象的平衡检测。 CFPRPN结合了图像金字塔和特征金字塔。图像金字塔由缩放版本的图像和特征金字塔组成,产生多个图层的特征映射。它们有助于捕获深度卷积网络中小对象的特征信息。同时,应用来自不同层的重叠大小的建议以提高多尺度对象的召回率。这些系列操作有利于CFPRPN提取更好的提案。我们通过实验证明,在添加微调位置后,多尺度对象的检测率进一步提高。鼓舞人心的事情是精炼位置方法适用于大多数物体检测算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号