首页> 外文期刊>Journal of supercomputing >An efficient causal structure learning algorithm for linear arbitrarily distributed continuous data
【24h】

An efficient causal structure learning algorithm for linear arbitrarily distributed continuous data

机译:一种高效的因果结构学习算法,用于线性任意分布式连续数据

获取原文
获取原文并翻译 | 示例

摘要

Aim to the linear arbitrarily distributed continuous data, an causal structure learning algorithm BSEM, which is based on simultaneous equations model, was presented. The algorithm merges together simultaneous equations model and local learning. The contribution of this paper is that for linear arbitrarily distributed datasets, BSEM algorithm can effectively learn the causal structure from the datasets. We used the Sociology data to do experiments, and results demonstrated that BSEM displays good accuracy and time performance.
机译:旨在提出线性任意分布的连续数据,提出了一种基于同时等式模型的因果结构学习算法BSEM。该算法将同时等式模型和本地学习合并。本文的贡献是对于线性任意分布的数据集,BSEM算法可以有效地从数据集中学习因果集。我们使用社会学数据进行实验,结果表明BSEM显示出良好的准确性和时间性能。

著录项

  • 来源
    《Journal of supercomputing》 |2020年第5期|3355-3363|共9页
  • 作者单位

    Hefei Univ Technol Dept Comp Sci & Technol Hefei 230009 Anhui Peoples R China;

    Hefei Univ Technol Dept Comp Sci & Technol Hefei 230009 Anhui Peoples R China;

    Hefei Univ Technol Dept Comp Sci & Technol Hefei 230009 Anhui Peoples R China;

    Univ Sci & Technol China Sch Management Hefei 230026 Anhui Peoples R China;

    Harvard Med Sch Ctr Biomed Informat Boston MA 02115 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Causal discovery; Simultaneous equations model; Arbitrary distribution;

    机译:因果发现;同时方程模型;任意分布;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号