首页> 外文期刊>Journal of supercomputing >An optimisation tool for robust community detection algorithms using content and topology information
【24h】

An optimisation tool for robust community detection algorithms using content and topology information

机译:使用内容和拓扑信息的鲁棒社区检测算法的优化工具

获取原文
获取原文并翻译 | 示例

摘要

With the recent prevalence of information networks, the topic of community detection has gained much interest among researchers. In real-world networks, node attribute (content information) is also available in addition to topology information. However, the collected topology information for networks is usually noisy when there are missing edges. Furthermore, the existing community detection methods generally focus on topology information and largely ignore the content information. This makes the task of community detection for incomplete networks very challenging. A new method is proposed that seeks to address this issue and help improve the performance of the existing community detection algorithms by considering both sources of information, i.e. topology and content. Empirical results demonstrate that our proposed method is robust and can detect more meaningful community structures within networks having incomplete information, than the conventional methods that consider only topology information.
机译:随着信息网络的最近普及,社区检测的话题已引起研究人员的极大兴趣。在实际网络中,除了拓扑信息之外,节点属性(内容信息)也可用。但是,当缺少边缘时,为网络收集的拓扑信息通常很嘈杂。此外,现有的社区检测方法通常集中在拓扑信息上,而在很大程度上忽略了内容信息。这使得针对不完整网络的社区检测任务非常具有挑战性。提出了一种新方法,该方法试图解决该问题并通过同时考虑信息源(即拓扑和内容)来帮助改善现有社区检测算法的性能。实验结果表明,与仅考虑拓扑信息的常规方法相比,我们提出的方法具有较强的鲁棒性,并且可以在具有不完整信息的网络中检测到更有意义的社区结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号