首页> 外文期刊>Journal of supercomputing >ESNemble: an Echo State Network-based ensemble for workload prediction and resource allocation of Web applications in the cloud
【24h】

ESNemble: an Echo State Network-based ensemble for workload prediction and resource allocation of Web applications in the cloud

机译:ENSemble:基于Echo State Network的集成,用于在云中对Web应用程序进行工作负载预测和资源分配

获取原文
获取原文并翻译 | 示例

摘要

Workload prediction is an essential prerequisite to allocate resources efficiently and maintain service level agreements in cloud computing environment. However, the best solution for a prediction task may not be a single model due to the challenge of varied characteristics of different systems. Thus, in this work, we propose an ensemble model, namely ESNemble, based on echo state network (ESN) for workload time series forecasting. ESNemble consists of four main steps, including features selection using ESN reservoirs, dimensionality reduction using kernel principal component analysis, features aggregation using matrices concatenation, and regression using least absolute shrinkage and selection operator for final predictions. In addition, necessary hyperparameters for ESNemble are optimized using genetic algorithm. For experimental evaluation, we have used ESNemble to combine five different prediction algorithms on three recent logs extracted from real-world web servers. Through our experimental results, we have shown that ESNemble outperforms all component models in terms of accuracy and resource allocation and presented the running time of our model to show the feasibility of our model in realworld applications.
机译:工作量预测是在云计算环境中有效分配资源和维护服务水平协议的必要前提。但是,由于挑战不同系统的各种特性,因此预测任务的最佳解决方案可能不是单一模型。因此,在这项工作中,我们提出了基于回波状态网络(ESN)的工作量时间序列预测的集成模型,即ESNemble。 ESNemble包含四个主要步骤,包括使用ESN容器进行特征选择,使用核主成分分析进行维数缩减,使用矩阵级联进行特征聚合以及使用最小绝对收缩和选择算子进行回归以进行最终预测。另外,使用遗传算法优化了ESNemble必需的超参数。为了进行实验评估,我们使用ESNemble在从真实Web服务器提取的三个最新日志上组合了五种不同的预测算法。通过我们的实验结果,我们表明ESNemble在准确性和资源分配方面优于所有组件模型,并给出了模型的运行时间,以证明该模型在实际应用中的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号