首页> 外文期刊>Journal of supercomputing >Identifying the social-balanced densest subgraph from signed social networks
【24h】

Identifying the social-balanced densest subgraph from signed social networks

机译:从已签名的社交网络中识别社交平衡的最密集子图

获取原文
获取原文并翻译 | 示例

摘要

Identifying the dense subgraphs from large graphs is important and useful to various social media mining applications. Most of existing works focus on the densest subgraph problem in the unweighted and undirected represented social network which can maximize the average degree over all possible subgraphs. However, considering the frequent signed relationships occurred in real-life social network, this paper introduces the social-balanced densest subgraph problem in signed social network by incorporating the social balance theory. We obtain a novel problem formulation that is to identify the subset of vertices that can maximize the social-balanced density in signed social networks. Further, we propose an efficient approach for identifying the social-balanced densest subgraph based on formal concept analysis. The case study illustrates that our algorithm can efficiently identify the social-balanced densest subgraph for satisfying the specific application's requirements.
机译:从大型图形中识别出密集的子图形对于各种社交媒体挖掘应用程序都是重要且有用的。现有的大多数工作都集中在未加权和无向表示的社交网络中最密集的子图问题,该问题可以使所有可能的子图的平均度最大化。但是,考虑到现实生活中社交网络中频繁发生的签名关系,本文通过结合社会平衡理论,介绍了签名社交网络中的社会平衡最密子图问题。我们获得了一个新颖的问题表述,该问题表述是确定可以使签名的社交网络中的社交平衡密度最大化的顶点子集。此外,我们提出了一种基于形式概念分析的识别社会平衡最密集子图的有效方法。案例研究表明,我们的算法可以有效地识别社交平衡的最密集子图,以满足特定应用程序的需求。

著录项

  • 来源
    《Journal of supercomputing》 |2016年第7期|2782-2795|共14页
  • 作者单位

    Soonchunhyang Univ, Dept Comp Software Engn, Asan, South Korea;

    Soonchunhyang Univ, Dept Comp Software Engn, Asan, South Korea;

    Xihua Univ, Ctr Radio Adm & Technol Dev, Chengdu, Peoples R China;

    Soonchunhyang Univ, Dept Comp Software Engn, Asan, South Korea;

    Dongguk Univ, Dept Multimedia Engn, Seoul, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Densest subgraph; Signed social network; FCA; SBDS;

    机译:密度子图;签名社交网络;FCA;SBDS;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号