首页> 外文期刊>The Journal of Supercomputing >A new noise-compensated estimation scheme for multichannel autoregressive signals from noisy observations
【24h】

A new noise-compensated estimation scheme for multichannel autoregressive signals from noisy observations

机译:来自噪声观测的多通道自回归信号的新噪声补偿估计方案

获取原文
获取原文并翻译 | 示例

摘要

In many engineering applications concerning the recovery of signals from noisy observations, a common approach consists in adopting autoregressive (AR) models. This paper is concerned with not only the estimation of multichannel autoregressive (MAR) model parameters but also the recovery of signals. A new noise compensated parameter estimation scheme is introduced in this paper. It contains an advanced least square vector (ALSV) algorithm which not only keeps the advantage of blindly estimating the MAR parameters and the variance-covariance matrix of observation noises, but also aims at ensuring the variance-covariance matrix to be symmetric in each iterative procedure. Moreover, the estimation of variance-covariance matrix of input noise is proposed, and then we form an optimal filtering to recover the signals. In the numerical simulations, the estimation performance of the ALSV estimation algorithm significantly outperforms that of other existed methods. Moreover, the optimal filtering based on the ALSV algorithm leads to more accurate recovery of the true signals.
机译:在许多涉及从噪声观测中恢复信号的工程应用中,一种常见的方法是采用自回归(AR)模型。本文不仅涉及多通道自回归(MAR)模型参数的估计,还涉及信号的恢复。介绍了一种新的噪声补偿参数估计方案。它包含先进的最小二乘向量(ALSV)算法,该算法不仅保持盲目估计MAR参数和观测噪声的方差-协方差矩阵的优势,而且还旨在确保方差-协方差矩阵在每个迭代过程中都是对称的。此外,提出了输入噪声方差-协方差矩阵的估计,然后形成最优滤波以恢复信号。在数值模拟中,ALSV估计算法的估计性能明显优于其他现有方法。此外,基于ALSV算法的最佳滤波可导致更准确地恢复真实信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号