首页> 外文期刊>Journal of statistical computation and simulation >Bootstrap prediction intervals for autoregressive conditional duration models
【24h】

Bootstrap prediction intervals for autoregressive conditional duration models

机译:自回归条件持续时间模型的自举预测间隔

获取原文
获取原文并翻译 | 示例

摘要

In the recent past, the autoregressive conditional duration (ACD) models have gained popularity in modelling the durations between successive events. The aim of this paper is to propose a simple and distribution free re-sampling procedure for developing the forecast intervals of linear ACD Models. We use the conditional least squares method to estimate the parameters of the ACD Model instead of the conditional Maximum Likelihood Estimation or Quasi-Maximum Likelihood Estimation and show that they are consistent for large samples. The properties of the proposed procedure are illustrated by a simulation study and an application to two real data sets.
机译:在最近的过去中,自回归条件持续时间(ACD)模型在对连续事件之间的持续时间进行建模中已广受欢迎。本文的目的是为建立线性ACD模型的预测间隔提出一种简单且无分布的重采样程序。我们使用条件最小二乘法来估计ACD模型的参数,而不是条件最大似然估计或拟最大似然估计,并证明它们对于大样本是一致的。通过仿真研究和对两个真实数据集的应用说明了所建议程序的属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号