首页> 外文期刊>Journal of statistical computation and simulation >Dependency and truncated forms of combinations in multivariate combination-based permutation tests and ordered categorical variables
【24h】

Dependency and truncated forms of combinations in multivariate combination-based permutation tests and ordered categorical variables

机译:基于多元组合的排列检验和有序分类变量中组合的依存关系和截断形式

获取原文
获取原文并翻译 | 示例

摘要

Quite an important problem usually occurs in several multi-dimensional hypotheses testing problems when variables are correlated. In this framework the non-parametric combination (NPC) of a finite number of dependent permutation tests is suitable to cover almost all real situations of practical interest since the dependence relations among partial tests are implicitly captured by the combining procedure itself without the need to specify them [Pesarin F, Salmaso L. Permutation tests for complex data: theory, applications and software. Chichester: Wiley; 2010a]. An open problem related to NPC-based tests is the impact of the dependency structure on combined tests, especially in the presence of categorical variables. This paper's goal is firstly to investigate the impact of the dependency structure on the possible significance of combined tests in cases of ordered categorical responses using Monte Carlo simulations, then to propose some specific procedures aimed at improving the power of multivariate combination-based permutation tests. The results show that an increasing level of correlation/association among responses negatively affects the power of combination-based multivariate permutation tests. The application of special forms of combination functions based on the truncated product method [Zaykin DV, Zhivotovsky LA, Westfall PH, Weir BS. Truncated product method for combining p-values. Genet Epidemiol. 2002;22:170-185; Dudbridge F, Koeleman BPC. Rank truncated product of p-values, with application to genomewide association scans. Genet Epidemiol. 2003;25:360-366] or on Liptak combination allowed us, using Monte Carlo simulations, to demonstrate the possibility of mitigating the negative effect on power of combination-based multivariate permutation tests produced by an increasing level of correlation/association among responses.
机译:当变量相关时,在几个多维假设检验问题中通常会出现一个非常重要的问题。在此框架中,有限数量的相关置换测试的非参数组合(NPC)适合覆盖几乎所有实际感兴趣的实际情况,因为部分测试之间的依赖关系是由组合过程本身隐式捕获的,而无需指定他们[Pesarin F,Salmaso L.对复杂数据的置换测试:理论,应用和软件。奇切斯特:威利; 2010a]。与基于NPC的测试相关的一个开放问题是依赖性结构对组合测试的影响,尤其是在存在分类变量的情况下。本文的目标是首先使用蒙特卡洛模拟研究有序分类响应情况下依赖性结构对组合测试可能意义的影响,然后提出一些旨在提高基于组合组合的多元检验能力的特定程序。结果表明,响应之间相关性/关联性的提高对基于组合的多元排列检验的功效产生负面影响。基于截积法[Zaykin DV,Zhivotovsky LA,Westfall PH,Weir BS。组合p值的截断乘积方法。基因流行病。 2002; 22:170-185; Dudbridge F,Koeleman BPC。对p值的截断产物进行排序,应用于全基因组关联扫描。基因流行病。 [2003; 25:360-366]或Liptak组合使我们能够使用蒙特卡洛模拟,来证明减轻因响应之间相关性/关联性水平提高而产生的基于组合的多元置换检验对功率的负面影响的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号