首页> 外文期刊>Journal of statistical computation and simulation >Estimation of the joint survival function for successive duration times under double-truncation and right-censoring
【24h】

Estimation of the joint survival function for successive duration times under double-truncation and right-censoring

机译:双截断和右删截下连续生存时间的联合生存函数估计

获取原文
获取原文并翻译 | 示例

摘要

In incident cohort studies, survival data often include subjects who have had an initiate event at recruitment and may potentially experience two successive events (first and second) during the follow-up period. When disease registries or surveillance systems collect data based on incidence occurring within a specific calendar time interval, the initial event is usually subject to double truncation. Furthermore, since the second duration process is observable only if the first event has occurred, double truncation and dependent censoring arise. In this article, under the two sampling biases with an unspecified distribution of truncation variables, we propose a nonparametric estimator of the joint survival function of two successive duration times using the inverse-probability-weighted (IPW) approach. The consistency of the proposed estimator is established. Based on the estimated marginal survival functions, we also propose a two-stage estimation procedure for estimating the parameters of copula model. The bootstrap method is used to construct confidence interval. Numerical studies demonstrate that the proposed estimation approaches perform well with moderate sample sizes.
机译:在事件队列研究中,生存数据通常包括在招募时曾发生过初始事件且可能在随访期间经历两次连续事件(第一和第二次)的受试者。当疾病登记或监视系统根据在特定日历时间间隔内发生的发病率收集数据时,通常会将初始事件进行两次截断。此外,由于仅在发生第一事件时才可观察到第二持续时间过程,因此出现了双重截断和相关检查。在本文中,在截断变量未指定的两个采样偏差下,我们使用反概率加权(IPW)方法提出了两个连续持续时间的联合生存函数的非参数估计。建立了所提出估计量的一致性。基于估计的边际生存函数,我们还提出了两阶段估计程序来估计copula模型的参数。引导程序方法用于构造置信区间。数值研究表明,所提出的估计方法在中等样本量下表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号