首页> 外文期刊>Journal of Real-Time Image Processing >Scalable implementation of particle filter-based visual object tracking on network-on-chip (NoC)
【24h】

Scalable implementation of particle filter-based visual object tracking on network-on-chip (NoC)

机译:网络上基于粒子滤波器的可视对象跟踪的可扩展实现(NOC)

获取原文
获取原文并翻译 | 示例

摘要

Particle filter algorithms have been successfully used in various visual object tracking applications. They handle non-linear model and non-Gaussian noise, but are computationally demanding. In this paper, we propose a scalable implementation of particle filter algorithm for visual object tracking, using scalable interconnect such as network-on-chip on an FPGA platform. Here, several processing elements execute parallelly to handle large number of particles. We propose two designs and implementations, with one optimized for speed and other optimized for area. These implementations can easily support different image sizes, object sizes, and number of particles, without modifying the complete architecture. Multi-target tracking is also demonstrated for four objects. We validated the particle filter-based visual tracking with video feed from a Petalinux-based system. With image size of320x240 frame rates of 348 fps and 310 fps were achieved for single-object tracking of size17x17nd33x33pixels, respectively, with a reasonable low-power consumption of 1.7 mW/fps on Zynq XC7Z020 (Zedboard) with an operating frequency of 69 MHz. This makes our implementation a good candidate for low-power, visual object tracking using FPGA, especially in low-power, smart camera applications.
机译:粒子滤波器算法已成功用于各种可视目标跟踪应用程序。它们处理非线性模型和非高斯噪声,但是计算得苛刻。在本文中,我们提出了一种可扩展的用于视觉对象跟踪的粒子滤波器算法,使用诸如FPGA平台上的网络上的可伸缩互连。这里,若干处理元件并行地执行以处理大量粒子。我们提出了两个设计和实现,一个优化的速度和其他优化的区域。这些实现可以容易地支持不同的图像大小,对象大小和粒子数而不修改完整的架构。对于四个对象,还展示了多目标跟踪。我们通过从基于Petalinux的系统验证了基于粒子滤波器的视觉跟踪。具有320x240的图像尺寸,348 fps和310 fps的速率分别用于尺寸为17x17nd33x33ppixels的单一物体跟踪,在Zynq XC7Z020(Zedboard)上具有1.7 MW / FPS的合理低功耗,运行频率为69 MHz 。这使我们的实施是使用FPGA的低功耗,视觉对象跟踪的良好候选者,尤其是在低功耗,智能摄像机应用中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号